Using self-consistent field theory, we systematically explore the microphase separation in the class of two-component miktoarm star copolymers containing a single conjunction point between different blocks by considering an extended list of candidate microphases. We plot mean-field phase diagrams in the plane of segregation strength and composition for an array of representative star copolymers. Three principal phase diagram topologies, dictated by different phase stabilities, are exposed, displaying a hierarchy in complexity by increasing the molecular asymmetry. Our investigation indicates that the phase diagram topology depends on the ratios of arm numbers and Kuhn segment lengths, which highlights the role of the coordination number ratio between different polymers at the domain interface. These findings reveal the simplicity of the general phase behavior and suggest a complete list of stable microphases for the entire class, which provide useful insight into studying copolymers with more complicated architectures and conformational properties.

1.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
New York
,
2006
).
2.
T. P.
Lodge
, “
Block copolymers: Past successes and future challenges
,”
Macromol. Chem. Phys.
204
,
265
273
(
2003
).
3.
I. W.
Hamley
, “
Ordering in thin films of block copolymers: Fundamentals to potential applications
,”
Prog. Polym. Sci.
34
,
1161
1210
(
2009
).
4.
H.-C.
Kim
,
S.-M.
Park
, and
W. D.
Hinsberg
, “
Block copolymer based nanostructures: Materials, processes, and applications to electronics
,”
Chem. Rev.
110
,
146
177
(
2010
).
5.
F. H.
Schacher
,
P. A.
Rupar
, and
I.
Manners
, “
Functional block copolymers: Nanostructured materials with emerging applications
,”
Angew. Chem., Int. Ed.
51
,
7898
7921
(
2012
).
6.
S. P.
Gido
,
C.
Lee
,
D. J.
Pochan
,
S.
Pispas
,
J. W.
Mays
, and
N.
Hadjichristidis
, “
Synthesis, characterization, and morphology of model graft copolymers with trifunctional branch points
,”
Macromolecules
29
,
7022
7028
(
1996
).
7.
C.
Lee
,
S. P.
Gido
,
Y.
Poulos
,
N.
Hadjichristidis
,
N. B.
Tan
,
S. F.
Trevino
, and
J. W.
Mays
, “
H-shaped double graft copolymers: Effect of molecular architecture on morphology
,”
J. Chem. Phys.
107
,
6460
6469
(
1997
).
8.
C.
Lee
,
S. P.
Gido
,
Y.
Poulos
,
N.
Hadjichristidis
,
N. B.
Tan
,
S. F.
Trevino
, and
J. W.
Mays
, “
π-Shaped double-graft copolymers: Effect of molecular architecture on morphology
,”
Polymer
39
,
4631
4638
(
1998
).
9.
D. J.
Pochan
,
S. P.
Gido
,
S.
Pispas
,
J. W.
Mays
,
A. J.
Ryan
,
J. P. A.
Fairclough
,
I. W.
Hamley
, and
N. J.
Terrill
, “
Morphologies of microphase-separated A2B simple graft copolymers
,”
Macromolecules
29
,
5091
5098
(
1996
).
10.
C.
Lee
,
S. P.
Gido
,
M.
Pitsikalis
,
J. W.
Mays
,
N. B.
Tan
,
S. F.
Trevino
, and
N.
Hadjichristidis
, “
Asymmetric single graft block copolymers: Effect of molecular architecture on morphology
,”
Macromolecules
30
,
3732
3738
(
1997
).
11.
M. O.
de la Cruz
and
I. C.
Sanchez
, “
Theory of microphase separation in graft and star copolymers
,”
Macromolecules
19
,
2501
2508
(
1986
).
12.
S. T.
Milner
, “
Chain architecture and asymmetry in copolymer microphases
,”
Macromolecules
27
,
2333
2335
(
1994
).
13.
G. M.
Grason
and
R. D.
Kamien
, “
Interfaces in diblocks: A study of miktoarm star copolymers
,”
Macromolecules
37
,
7371
7380
(
2004
).
14.
M. W.
Matsen
, “
Effect of architecture on the phase behavior of AB-type block copolymer melts
,”
Macromolecules
45
,
2161
2165
(
2012
).
15.
W.
Shi
,
Y.
Tateishi
,
W.
Li
,
C. J.
Hawker
,
G. H.
Fredrickson
, and
E. J.
Kramer
, “
Producing small domain features using miktoarm block copolymers with large interaction parameters
,”
ACS Macro Lett.
4
,
1287
1292
(
2015
).
16.
L.
Leibler
, “
Theory of microphase separation in block copolymers
,”
Macromolecules
13
,
1602
1617
(
1980
).
17.
A. N.
Semenov
, “
Contribution to the theory of microphase layering in block-copolymer melts
,”
Sov. Phys. JETP
61
,
733
742
(
1985
).
18.
M. W.
Matsen
, “
The standard Gaussian model for block copolymer melts
,”
J. Phys.: Condens. Matter
14
,
R21
R47
(
2002
).
19.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
,
2660
2663
(
1994
).
20.
J. D.
Vavasour
and
M. D.
Whitmore
, “
Self-consistent mean field theory of the microphases of diblock copolymers
,”
Macromolecules
25
,
5477
5486
(
1992
).
21.
J. D.
Vavasour
and
M. D.
Whitmore
, “
Self-consistent field theory of block copolymers with conformational asymmetry
,”
Macromolecules
26
,
7070
7075
(
1993
).
22.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a linear multiblock copolymer melt
,”
Macromolecules
27
,
7157
7163
(
1994
).
23.
M. W.
Matsen
and
M.
Schick
, “
Microphase separation in starblock copolymer melts
,”
Macromolecules
27
,
6761
6767
(
1994
).
24.
M. W.
Matsen
and
F. S.
Bates
, “
Unifying weak- and strong-segregation block copolymer theories
,”
Macromolecules
29
,
1091
1098
(
1996
).
25.
M. W.
Matsen
and
F. S.
Bates
, “
Conformationally asymmetric block copolymers
,”
J. Polym. Sci., Part B: Polym. Phys.
35
,
945
952
(
1997
).
26.
M. W.
Matsen
and
R. B.
Thompson
, “
Equilibrium behavior of symmetric ABA triblock copolymer melts
,”
J. Chem. Phys.
111
,
7139
(
1999
).
27.
M. W.
Matsen
, “
Equilibrium behavior of asymmetric ABA triblock copolymer melts
,”
J. Chem. Phys.
113
,
5539
(
2000
).
28.
G. M.
Grason
,
B. A.
DiDonna
, and
R. D.
Kamien
, “
Geometric theory of diblock copolymer phases
,”
Phys. Rev. Lett.
91
,
058304
(
2003
).
29.
C. A.
Tyler
and
D. C.
Morse
, “
Orthorhombic Fddd network in triblock and diblock copolymer melts
,”
Phys. Rev. Lett.
94
,
208302
(
2005
).
30.
E. W.
Cochran
,
C. J.
Garcia-Cervera
, and
G. H.
Fredrickson
, “
Stability of the gyroid phase in diblock copolymers at strong segregation
,”
Macromolecules
39
,
2449
2451
(
2006
).
31.
L.
Zhang
,
J.
Lin
, and
S.
Lin
, “
Effect of molecular architecture on phase behavior of graft copolymers
,”
J. Phys. Chem. B
112
,
9720
9728
(
2008
).
32.
L.
Wang
,
L.
Zhang
, and
J.
Lin
, “
Microphase separation in multigraft copolymer melts studied by random-phase approximation and self-consistent field theory
,”
J. Chem. Phys.
129
,
114905
(
2008
).
33.
R.
Jiang
,
Q.
Jin
,
B.
Li
,
D.
Ding
,
R. A.
Wickham
, and
A.-C.
Shi
, “
Phase behavior of gradient copolymers
,”
Macromolecules
41
,
5457
5465
(
2008
).
34.
N. A.
Lynd
,
F. T.
Oyerokun
,
D. L.
O’Donoghue
,
D. L.
Handlin
, and
G. H.
Fredrickson
, “
Design of soft and strong thermoplastic elastomers based on nonlinear block copolymer architectures using self-consistent-field theory
,”
Macromolecules
43
,
3479
3486
(
2010
).
35.
G.
Zhang
,
Z.
Fan
,
Y.
Yang
, and
F.
Qiu
, “
Phase behaviors of cyclic diblock copolymers
,”
J. Chem. Phys.
135
,
174902
(
2011
).
36.
J. U.
Kim
,
Y.-B.
Yang
, and
W. B.
Lee
, “
Self-consistent field theory of Gaussian ring polymers
,”
Macromolecules
45
,
3263
3269
(
2012
).
37.
J. R.
Brown
,
S. W.
Sides
, and
L. M.
Hall
, “
Phase behavior of tapered diblock copolymers from self-consistent field theory
,”
ACS Macro Lett.
2
,
1105
1109
(
2013
).
38.
N.
Xie
,
W.
Li
,
F.
Qiu
, and
A.-C.
Shi
, “
σ phase formed in conformationally asymmetric AB-type block copolymers
,”
ACS Macro Lett.
3
,
906
910
(
2014
).
39.
Y.
Gao
,
H.
Deng
,
W.
Li
,
F.
Qiu
, and
A.-C.
Shi
, “
Formation of nonclassical ordered phases of AB-type multi-arm block copolymers
,”
Phys. Rev. Lett.
116
,
068304
(
2016
).
40.
W.
Li
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Fddd network phase in ABA triblock copolymer melts
,”
J. Polym. Sci., Part B: Polym. Phys.
54
,
1112
1117
(
2016
).
41.
R. K. W.
Spencer
and
M. W.
Matsen
, “
Domain bridging in thermoplastic elastomers of star block copolymer
,”
Macromolecules
50
,
1681
1687
(
2017
).
42.
B.
Zhao
,
W.
Jiang
,
L.
Chen
,
W.
Li
,
F.
Qiu
, and
A.-C.
Shi
, “
Emergence and stability of a hybrid lamella-sphere structure from linear ABAB tetrablock copolymers
,”
ACS Macro Lett.
7
,
95
99
(
2018
).
43.
W.
Jiang
,
Y.
Qiang
,
W.
Li
,
F.
Qiu
, and
A.-C.
Shi
, “
Effects of chain topology on the self-assembly of AB-type block copolymers
,”
Macromolecules
51
,
1529
1538
(
2018
).
44.
S.
Ahn
,
J. K.
Kim
,
B.
Zhao
,
C.
Duan
, and
W.
Li
, “
Morphology transitions of linear A1B1A2B2 tetrablock copolymers at symmetric overall volume fraction
,”
Macromolecules
51
,
4415
4421
(
2018
).
45.
L.
Chen
,
Y.
Qiang
, and
W.
Li
, “
Tuning arm architecture leads to unusual phase behaviors in a (BAB)5 star copolymer melt
,”
Macromolecules
51
,
9890
9900
(
2018
).
46.
Y.
Qiang
,
W.
Li
, and
A.-C.
Shi
, “
Stabilizing phases of block copolymers with gigantic spheres via designed chain architectures
,”
ACS Macro Lett.
9
,
668
673
(
2020
).
47.
Q.
Xie
,
Y.
Qiang
,
L.
Chen
,
Y.
Xia
, and
W.
Li
, “
Synergistic effect of stretched bridging block and released packing frustration leads to exotic nanostructures
,”
ACS Macro Lett.
9
,
980
984
(
2020
).
48.
S. M.
Gruner
, “
Stability of lyotropic phases with curved interfaces
,”
J. Phys. Chem.
93
,
7562
7570
(
1989
).
49.
M. W.
Matsen
and
F. S.
Bates
, “
Origins of complex self-assembly in block copolymers
,”
Macromolecules
29
,
7641
7644
(
1996
).
50.
M. W.
Matsen
and
F. S.
Bates
, “
Block copolymer microstructures in the intermediate-segregation regime
,”
J. Chem. Phys.
106
,
2436
(
1997
).
51.
S.
Lee
,
C.
Leighton
, and
F. S.
Bates
, “
Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
17723
17731
(
2014
).

Supplementary Material

You do not currently have access to this content.