Plasmonic cavities (PCs) made of metallic nanostructures can concentrate electromagnetic radiation into an ultrasmall volume, where it might strongly interact with quantum emitters. In recent years, there has been much interest in studying such a strong coupling in the limit of single emitters. However, the lossy nature of PCs, reflected in their broad spectra, limits their quality factors and hence their performance as cavities. Here, we study the effect of the adhesion layer used in the fabrication of metal nanostructures on the spectral linewidths of bowtie-structured PCs. Using dark-field microspectroscopy, as well as electron energy loss spectroscopy, it is found that a reduction in the thickness of the chromium adhesion layer we use from 3 nm to 0.1 nm decreases the linewidths of both bright and dark plasmonic modes. We further show that it is possible to fabricate bowtie PCs without any adhesion layer, in which case the linewidth may be narrowed by as much as a factor of 2. Linewidth reduction increases the quality factor of these PCs accordingly, and it is shown to facilitate reaching the strong-coupling regime with semiconductor quantum dots.

1.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
, “
Quantum plasmonics
,”
Nat. Phys.
9
,
329
340
(
2013
).
2.
J. T.
Hugall
,
A.
Singh
, and
N. F.
van Hulst
, “
Plasmonic cavity coupling
,”
ACS Photonics
5
(
1
),
43
53
(
2018
).
3.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
(
1
),
013901
(
2015
).
4.
D. G.
Baranov
,
M.
Wersäll
,
J.
Cuadra
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Novel nanostructures and materials for strong light–matter interactions
,”
ACS Photonics
5
(
1
),
24
42
(
2018
).
5.
M.
Pelton
,
S. D.
Storm
, and
H.
Leng
, “
Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting
,”
Nanoscale
11
(
31
),
14540
14552
(
2019
).
6.
K.
Santhosh
,
O.
Bitton
,
L.
Chuntonov
, and
G.
Haran
, “
Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit
,”
Nat. Commun.
7
,
ncomms11823
(
2016
).
7.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
(
7610
),
127
130
(
2016
).
8.
H.
Gross
,
J. M.
Hamm
,
T.
Tufarelli
,
O.
Hess
, and
B.
Hecht
, “
Near-field strong coupling of single quantum dots
,”
Sci. Adv.
4
(
3
),
eaar4906
(
2018
).
9.
H.
Leng
,
B.
Szychowski
,
M. C.
Daniel
, and
M.
Pelton
, “
Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons
,”
Nat. Commun.
9
(
1
),
4012
(
2018
).
10.
K.-D.
Park
,
M. A.
May
,
H.
Leng
,
J.
Wang
,
J. A.
Kropp
,
T.
Gougousi
,
M.
Pelton
, and
M. B.
Raschke
, “
Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter
,”
Sci. Adv.
5
(
7
),
eaav5931
(
2019
).
11.
O.
Bitton
,
S. N.
Gupta
,
L.
Houben
,
M.
Kvapil
,
V.
Krapek
,
T.
Sikola
, and
G.
Haran
, “
Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons
,”
Nat. Commun.
11
(
1
),
487
(
2020
).
12.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer-Verlag Berlin Heidelberg
,
1995
), Vol. 25.
13.
Y.
Li
,
K.
Zhao
,
H.
Sobhani
,
K.
Bao
, and
P.
Nordlander
, “
Geometric dependence of the line width of localized surface plasmon resonances
,”
J. Phys. Chem. Lett.
4
(
8
),
1352
1357
(
2013
).
14.
B.
Foerster
,
J.
Rutten
,
H.
Pham
,
S.
Link
, and
C.
Sönnichsen
, “
Particle plasmons as dipole antennas: State representation of relative observables
,”
J. Phys. Chem. C
122
(
33
),
19116
19123
(
2018
).
15.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
,
J.
Zhao
, and
R. P.
Van Duyne
, “
Biosensing with plasmonic nanosensors
,”
Nat. Mater.
7
(
6
),
442
453
(
2008
).
16.
T.
Hummer
,
J.
Noe
,
M. S.
Hofmann
,
T. W.
Hansch
,
A.
Hogele
, and
D.
Hunger
, “
Cavity-enhanced Raman microscopy of individual carbon nanotubes
,”
Nat. Commun.
7
,
12155
(
2016
).
17.
K. J.
Vahala
, “
Optical microcavities
,”
Nature
424
(
6950
),
839
846
(
2003
).
18.
C.
Sonnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
,
J.
Feldmann
,
O.
Wilson
, and
P.
Mulvaney
, “
Drastic reduction of plasmon damping in gold nanorods
,”
Phys. Rev. Lett.
88
(
7
),
077402
(
2002
).
19.
C.
Sonnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
, and
J.
Feldmann
, “
Plasmon resonances in large noble-metal clusters
,”
New J. Phys.
4
,
93
(
2002
).
20.
S.
Link
and
M. A.
El-Sayed
, “
Optical properties and ultrafast dynamics of metallic nanocrystals
,”
Annu. Rev. Phys. Chem.
54
,
331
366
(
2003
).
21.
A.
Melikyan
and
H.
Minassian
, “
On surface plasmon damping in metallic nanoparticles
,”
Appl. Phys. B
78
(
3-4
),
453
455
(
2004
).
22.
J.
Lermé
,
H.
Baida
,
C.
Bonnet
,
M.
Broyer
,
E.
Cottancin
,
A.
Crut
,
P.
Maioli
,
N.
Del Fatti
,
F.
Vallée
, and
M.
Pellarin
, “
Size dependence of the surface plasmon resonance damping in metal nanospheres
,”
J. Phys. Chem. Lett.
1
(
19
),
2922
2928
(
2010
).
23.
W.
Rechberger
,
A.
Hohenau
,
A.
Leitner
,
J. R.
Krenn
,
B.
Lamprecht
, and
F. R.
Aussenegg
, “
Optical properties of two interacting gold nanoparticles
,”
Opt. Commun.
220
(
1-3
),
137
141
(
2003
).
24.
C.
Dahmen
,
B.
Schmidt
, and
G.
von Plessen
, “
Radiation damping in metal nanoparticle pairs
,”
Nano Lett.
7
(
2
),
318
322
(
2007
).
25.
M.
Kaniber
,
K.
Schraml
,
A.
Regler
,
J.
Bartl
,
G.
Glashagen
,
F.
Flassig
,
J.
Wierzbowski
, and
J. J.
Finley
, “
Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
,”
Sci. Rep.
6
,
23203
(
2016
).
26.
H.
Aouani
,
J.
Wenger
,
D.
Gérard
,
H.
Rigneault
,
E.
Devaux
,
T. W.
Ebbesen
,
F.
Mahdavi
,
T.
Xu
, and
S.
Blair
, “
Crucial role of the adhesion layer on the plasmonic fluorescence enhancement
,”
ACS Nano
3
(
7
),
2043
2048
(
2009
).
27.
T. G.
Habteyes
,
S.
Dhuey
,
E.
Wood
,
D.
Gargas
,
S.
Cabrini
,
P. J.
Schuck
,
A. P.
Alivisatos
, and
S. R.
Leone
, “
Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative
,”
ACS Nano
6
(
6
),
5702
5709
(
2012
).
28.
D. T.
Debu
,
P. K.
Ghosh
,
D.
French
, and
J. B.
Herzog
, “
Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks
,”
Opt. Mater. Express
7
(
1
),
73
84
(
2017
).
29.
M.
Hu
,
C.
Novo
,
A.
Funston
,
H.
Wang
,
H.
Staleva
,
S.
Zou
,
P.
Mulvaney
,
Y.
Xia
, and
G. V.
Hartland
, “
Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance
,”
J. Mater. Chem.
18
(
17
),
1949
1960
(
2008
).
30.
D. P.
Fromm
,
A.
Sundaramurthy
,
P. J.
Schuck
,
G.
Kino
, and
W. E.
Moerner
, “
Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible
,”
Nano Lett.
4
(
5
),
957
961
(
2004
).
31.
S.
Dodson
,
M.
Haggui
,
R.
Bachelot
,
J.
Plain
,
S.
Li
, and
Q.
Xiong
, “
Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae
,”
J. Phys. Chem. Lett.
4
(
3
),
496
501
(
2013
).
32.
K.
Schraml
,
M.
Spiegl
,
M.
Kammerlocher
,
G.
Bracher
,
J.
Bartl
,
T.
Campbell
,
J. J.
Finley
, and
M.
Kaniber
, “
Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate
,”
Phys. Rev. B
90
,
035435
(
2014
).
33.
M.
Meier
and
A.
Wokaun
, “
Enhanced fields on large metal particles: Dynamic depolarization
,”
Opt. Lett.
8
(
11
),
581
583
(
1983
).
34.
F. J.
García de Abajo
, “
Optical excitations in electron microscopy
,”
Rev. Mod. Phys.
82
,
209
275
(
2010
).
35.
C.
Colliex
,
M.
Kociak
, and
O.
Stéphan
, “
Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale
,”
Ultramicroscopy
162
,
A1
A24
(
2016
).
36.
A. L.
Koh
,
A. I.
Fernández-Domínguez
,
D. W.
McComb
,
S. A.
Maier
, and
J. K. W.
Yang
, “
High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures
,”
Nano Lett.
11
(
3
),
1323
1330
(
2011
).
37.
X.
Wu
,
S. K.
Gray
, and
M.
Pelton
, “
Quantum-dot-induced transparency in a nanoscale plasmonic resonator
,”
Opt. Express
18
(
23
),
23633
23645
(
2010
).
38.
A.
Pinchuk
,
G.
von Plessen
, and
U.
Kreibig
, “
Influence of interband electronic transitions on the optical absorption in metallic nanoparticles
,”
J. Phys. D: Appl. Phys.
37
,
3133
(
2004
).
39.
A.
Wokaun
,
J. P.
Gordon
, and
P. F.
Liao
, “
Radiation damping in surface-enhanced Raman scattering
,”
Phys. Rev. Lett.
48
(
14
),
957
960
(
1982
).
40.
C.
Novo
,
D.
Gomez
,
J.
Perez-Juste
,
Z.
Zhang
,
H.
Petrova
,
M.
Reismann
,
P.
Mulvaney
, and
G. V.
Hartland
, “
Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: A single particle study
,”
Phys. Chem. Chem. Phys.
8
(
30
),
3540
3546
(
2006
).
41.
G. V.
Hartland
, “
Optical studies of dynamics in noble metal nanostructures
,”
Chem. Rev.
111
(
6
),
3858
3887
(
2011
).
42.
P.
Apell
,
R.
Monreal
, and
F.
Flores
, “
Effective relaxation time in small spheres: Diffuse surface scattering
,”
Solid State Commun.
52
(
12
),
971
973
(
1984
).
43.
A.
Hoggard
,
L.-Y.
Wang
,
L.
Ma
,
Y.
Fang
,
G.
You
,
J.
Olson
,
Z.
Liu
,
W.-S.
Chang
,
P. M.
Ajayan
, and
S.
Link
, “
Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene
,”
ACS Nano
7
(
12
),
11209
11217
(
2013
).
44.
S. W.
Moon
,
P. V.
Tsalu
, and
J. W.
Ha
, “
Single particle study: Size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods
,”
Phys. Chem. Chem. Phys.
20
(
34
),
22197
22202
(
2018
).
45.
B.
Foerster
,
V. A.
Spata
,
E. A.
Carter
,
C.
Sönnichsen
, and
S.
Link
, “
Plasmon damping depends on the chemical nature of the nanoparticle interface
,”
Sci. Adv.
5
(
3
),
eaav0704
(
2019
).
46.
A. J.
Therrien
,
M. J.
Kale
,
L.
Yuan
,
C.
Zhang
,
N. J.
Halas
, and
P.
Christopher
, “
Impact of chemical interface damping on surface plasmon dephasing
,”
Faraday Discuss.
214
,
59
72
(
2019
).
47.
J.
Olson
,
S.
Dominguez-Medina
,
A.
Hoggard
,
L.-Y.
Wang
,
W.-S.
Chang
, and
S.
Link
, “
Optical characterization of single plasmonic nanoparticles
,”
Chem. Soc. Rev.
44
(
1
),
40
57
(
2015
).
48.
M. Z.
Liu
,
M.
Pelton
, and
P.
Guyot-Sionnest
, “
Reduced damping of surface plasmons at low temperatures
,”
Phys. Rev. B
79
(
3
),
035418
(
2009
).
49.
T. C.
Tisone
and
J.
Drobek
, “
Diffusion in thin-film Ti–Au, Ti–Pd, and Ti–Pt couples
,”
J. Vac. Sci. Technol.
9
(
1
),
271
(
1972
).
50.
M.
Todeschini
,
A.
Bastos da Silva Fanta
,
F.
Jensen
,
J. B.
Wagner
, and
A.
Han
, “
Influence of Ti and Cr adhesion layers on ultrathin Au films
,”
ACS Appl. Mater. Interfaces
9
(
42
),
37374
37385
(
2017
).
51.
M.
Venkatraman
and
J. P.
Neumann
, “
The Ag-Cr (silver-chromium) system
,”
Bull. Alloy Phase Diagrams
11
,
263
(
1990
).
52.
F.
Pan
,
K.
Tao
,
Y.
Du
, and
B. X.
Liu
, “
Interface reactions of an Ag/Cr/AlN sandwich during annealing between 250 and 650 °C
,”
Thin Solid Films
269
(
1-2
),
47
50
(
1995
).
53.
B. N. J.
Persson
, “
Polarizability of small spherical metal particles
,”
Surf. Sci.
281
,
153
162
(
1993
).
54.
E. C.
LeRu
and
P. G.
Etchegoin
, “
Principles of surface-enhanced Raman spectroscopy: And related plasmonic effects
,” in
Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects
(
Elsevier Science
,
2009
), pp.
1
663
.
55.
J.
Rodríguez-Fernández
,
A. M.
Funston
,
J.
Pérez-Juste
,
R. A.
Álvarez-Puebla
,
L. M.
Liz-Marzán
, and
P.
Mulvaney
, “
The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres
,”
Phys. Chem. Chem. Phys.
11
(
28
),
5909
5914
(
2009
).
56.
J. H.
Park
,
P.
Ambwani
,
M.
Manno
,
N. C.
Lindquist
,
P.
Nagpal
,
S.-H.
Oh
,
C.
Leighton
, and
D. J.
Norris
, “
Single-crystalline silver films for plasmonics
,”
Adv. Mater.
24
(
29
),
3988
3992
(
2012
).
57.
G.
Zengin
,
M.
Wersall
,
S.
Nilsson
,
T. J.
Antosiewicz
,
M.
Kall
, and
T.
Shegai
, “
Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions
,”
Phys. Rev. Lett.
114
(
15
),
157401
(
2015
).

Supplementary Material

You do not currently have access to this content.