Bimetallic alloys have attracted considerable attention due to the tunable catalytic activity and selectivity that can be different from those of pure metals. Here, we study the superior catalytic behaviors of the Pt3Ni nanowire (NW) over each individual, Pt and Ni NWs during the reverse Water Gas Shift (rWGS) reaction, using density functional theory. The results show that the promoted rWGS activity by Pt3Ni strongly depends on the ensemble effect (a particular arrangement of active sites introduced by alloying), while the contributions from ligand and strain effects, which are of great importance in electrocatalysis, are rather subtle. As a result, a unique Ni–Pt hybrid ensemble is observed at the 110/111 edge of the Pt3Ni NW, where the synergy between Ni and Pt sites is active enough to stabilize carbon dioxide on the surface readily for the rWGS reaction but moderate enough to allow for the facile removal of carbon monoxide and hydrogenation of hydroxyl species. Our study highlights the importance of the ensemble effect in heterogeneous catalysis of metal alloys, enabling selective binding–tuning and promotion of catalytic activity.

1.
J.
Greeley
and
M.
Mavrikakis
,
Nat. Mater.
3
,
810
(
2004
).
2.
J.
Greeley
 et al.,
Nat. Chem.
1
,
552
(
2009
).
3.
L.
Zhang
and
G.
Henkelman
,
ACS Catal.
5
,
655
(
2015
).
4.
A.
Kowal
 et al.,
Nat. Mater.
8
,
325
(
2009
).
5.
S.
Liu
and
P.
Liu
,
J. Electrochem. Soc.
165
,
J3090
(
2018
).
6.
S.
Rudi
 et al.,
ACS Catal.
7
,
6376
(
2017
).
7.
8.
9.
V. R.
Stamenkovic
 et al.,
Science
315
,
493
(
2007
).
10.
W.
An
and
P.
Liu
,
ACS Catal.
5
,
6328
(
2015
).
11.
X.
Zhang
 et al.,
J. Chem. Phys.
142
,
194710
(
2015
).
12.
X.
Zhang
 et al.,
Phys. Chem. Chem. Phys.
16
,
16615
(
2014
).
13.
J. R.
Kitchin
 et al.,
Phys. Rev. Lett.
93
,
156801
(
2004
).
14.
S.
Kattel
,
P.
Liu
, and
J. G.
Chen
,
J. Am. Chem. Soc.
139
,
9739
(
2017
).
15.
D.
Liu
 et al.,
ACS Catal.
8
,
4120
(
2018
).
16.
S.
Kattel
 et al.,
J. Catal.
343
,
115
(
2016
).
17.
Z.
Ou
 et al.,
Int. J. Hydrogen Energy
44
,
819
(
2019
).
18.
J.
Xu
and
G. F.
Froment
,
AlChE J.
35
,
88
(
1989
).
19.
M. D.
Marcinkowski
 et al.,
Nat. Chem.
10
,
325
(
2018
).
20.
G.
Giannakakis
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Acc. Chem. Res.
52
,
237
(
2019
).
21.
H.
Thirumalai
and
J. R.
Kitchin
,
Top. Catal.
61
,
462
(
2018
).
22.
23.
P.
Liu
and
J. K.
Nørskov
,
Phys. Chem. Chem. Phys.
3
,
3814
(
2001
).
24.
S.
Cao
 et al.,
Chem. Soc. Rev.
45
,
4747
(
2016
).
25.
W.
An
and
P.
Liu
,
J. Phys. Chem. C
117
,
16144
(
2013
).
26.
M.
Núñez
,
J. L.
Lansford
, and
D. G.
Vlachos
,
Nat. Chem.
11
,
449
(
2019
).
27.
Q.
Jia
 et al.,
ACS Catal.
5
,
176
(
2014
).
28.
H.
Liu
 et al.,
J. Am. Chem. Soc.
137
,
12597
(
2015
).
29.
Z.
Zhou
 et al.,
J. Chem. Phys.
151
,
214704
(
2019
).
30.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
31.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
32.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
V.
Wang
 et al., arXiv:1908.08269 (
2019
).
35.
W. H.
Press
 et al.,
Numerical Recipe
(
Cambridge University Press
,
New York
,
1986
).
36.
37.
L.
Barrio
 et al.,
J. Phys. Chem. C
111
,
19001
(
2007
).
38.
N. A.
Lanzillo
,
J. Appl. Phys.
121
,
175104
(
2017
).
39.
J. A.
Garrido Torres
 et al.,
Phys. Rev. Lett.
122
,
156001
(
2019
).
40.
M. H.
Hansen
,
J. A. G.
Torres
,
P. C.
Jennings
,
Z.
Wang
,
J. R.
Boes
,
O. G.
Mamun
, and
T.
Bligaard
, arXiv:1904.00904 (
2019
).
41.
O.-P.
Koistinen
 et al.,
J. Chem. Phys.
147
,
152720
(
2017
).
42.
B.
Hammer
and
J. K.
Nørskov
,
Adv. Catal.
45
,
71
(
2000
).
43.
H.
Xin
 et al.,
Phys. Rev. B
89
,
115114
(
2014
).
44.
A.
Ruban
 et al.,
J. Mol. Catal. A
115
,
421
(
1997
).
45.
I.
Takigawa
 et al.,
RSC Adv.
6
,
52587
(
2016
).
46.
S.-G.
Wang
 et al.,
J. Phys. Chem. B
109
,
18956
(
2005
).
47.
M. J.
Hossain
,
M. M.
Rahman
, and
M.
Jafar Sharif
,
Nanoscale Adv.
2
,
1245
(
2020
).
48.
X.
Liu
,
L.
Sun
, and
W.-Q.
Deng
,
J. Phys. Chem. C
122
,
8306
(
2018
).
49.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
50.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
51.
M.
Yu
and
D. R.
Trinkle
,
J. Chem. Phys.
134
,
064111
(
2011
).
52.
N. B.
Arboleda
 et al.,
Jpn. J. Appl. Phys., Part 1
46
,
4233
(
2007
).
53.
P.
Kraus
and
I.
Frank
,
Int. J. Quantum Chem.
117
,
e25407
(
2017
).
54.
55.
H.
Yang
and
J. L.
Whitten
,
J. Chem. Phys.
98
,
5039
(
1993
).
56.
L. C.
Grabow
 et al.,
J. Phys. Chem. C
112
,
4608
(
2008
).
58.
B.
Shan
 et al.,
J. Phys. Chem. C
113
,
6088
(
2009
).
59.
H.
Orita
and
Y.
Inada
,
J. Phys. Chem. B
109
,
22469
(
2005
).
60.
P.
Kaiser
 et al.,
Chem. Ing. Tech.
85
,
489
(
2013
).

Supplementary Material

You do not currently have access to this content.