We show in a joint experimental and theoretical study that ultrafast femto-second (fs) electronic coherences can be characterized in semi-conducting colloidal quantum dot (QD) assemblies at room temperature. The dynamics of the electronic response of ensembles of CdSe QDs in the solution and of QD dimers in the solid state is probed by a sequence of 3 fs laser pulses as in two-dimensional (2D) electronic spectroscopy. The quantum dynamics is computed using an excitonic model Hamiltonian based on the effective mass approximation. The Hamiltonian includes the Coulomb, spin–orbit, and crystal field interactions that give rise to the fine structure splittings. In the dimers studied, the interdot distance is sufficiently small to allow for an efficient interdot coupling and delocalization of the excitons over the two QDs of the dimer. To account for the inherent few percent size dispersion of colloidal QDs, the optical response is modeled by averaging over an ensemble of 2000 dimers. The size dispersion is responsible for an inhomogeneous broadening that limits the lifetimes of the excitonic coherences that can be probed to about 150 fs–200 fs. Simulations and experimental measurements in the solid state and in the solution demonstrate that during that time scale, a very rich electronic coherent dynamics takes place that involves several types of intradot and interdot (in the case of dimers) coherences. These electronic coherences exhibit a wide range of beating periods and provide a versatile basis for a quantum information processing device on a fs time scale at room temperature.

1.
Nanocrystal Quantum Dots
, edited by
V. I.
Klimov
(
CRC Press
,
Boca Raton
,
2010
).
2.
L. E.
Brus
, “
Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state
,”
J. Chem. Phys.
80
(
9
),
4403
4409
(
1984
).
3.
A. P.
Alivisatos
, “
Semiconductor clusters, nanocrystals, and quantum dots
,”
Science
271
(
5251
),
933
(
1996
).
4.
D. J.
Norris
and
M. G.
Bawendi
, “
Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots
,”
Phys. Rev. B
53
(
24
),
16338
16346
(
1996
).
5.
K.
Tvrdy
,
P. A.
Frantsuzov
, and
P. V.
Kamat
, “
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
29
(
2011
).
6.
Colloidal Quantum Dot Optoelectronics and Photovoltaics
, edited by
G.
Konstantatos
and
E.
Sargent
(
Cambridge University Press
,
Cambridge
,
2013
).
7.
C. R.
Kagan
,
E.
Lifshitz
,
E. H.
Sargent
, and
D. V.
Talapin
, “
Building devices from colloidal quantum dots
,”
Science
353
(
6302
),
aac5523
(
2016
).
8.
O. V.
Kozlov
,
Y.-S.
Park
,
J.
Roh
,
I.
Fedin
,
T.
Nakotte
, and
V. I.
Klimov
, “
Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity
,”
Science
365
(
6454
),
672
(
2019
).
9.
Y. E.
Panfil
,
M.
Oded
, and
U.
Banin
, “
Colloidal quantum nanostructures: Emerging materials for display applications
,”
Angew. Chem.
57
(
16
),
4274
4295
(
2018
).
10.
A.
Imamoglu
,
D. D.
Awschalom
,
G.
Burkard
,
D. P.
DiVincenzo
,
D.
Loss
,
M.
Sherwin
, and
A.
Small
, “
Quantum information processing using quantum dot spins and cavity QED
,”
Phys. Rev. Lett.
83
(
20
),
4204
4207
(
1999
).
11.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
(
1
),
120
126
(
1998
).
12.
B.
Fresch
,
M.
Cipolloni
,
T.-M.
Yan
,
E.
Collini
,
R. D.
Levine
, and
F.
Remacle
, “
Parallel and multivalued logic by the two-dimensional photon-echo response of a rhodamine–DNA complex
,”
J. Phys. Chem. Lett.
6
,
1714
1718
(
2015
).
13.
B.
Fresch
,
D.
Hiluf
,
E.
Collini
,
R. D.
Levine
, and
F.
Remacle
, “
Molecular decision trees realized by ultrafast electronic spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
43
),
17183
17188
(
2013
).
14.
K.
Komarova
,
H.
Gattuso
,
R. D.
Levine
, and
F.
Remacle
, “
Quantum device emulates the dynamics of two coupled oscillators
,”
J. Phys. Chem. Lett.
11
,
6990
6995
(
2020
).
15.
E.
Cassette
,
R. D.
Pensack
,
B.
Mahler
, and
G. D.
Scholes
, “
Room-temperature exciton coherence and dephasing in two-dimensional nanostructures
,”
Nat. Commun.
6
,
6086
(
2015
).
16.
E.
Cassette
,
J. C.
Dean
, and
G. D.
Scholes
, “
Two-dimensional visible spectroscopy for studying colloidal semiconductor nanocrystals
,”
Small
12
(
16
),
2234
2244
(
2016
).
17.
D. B.
Turner
,
Y.
Hassan
, and
G. D.
Scholes
, “
Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy
,”
Nano Lett.
12
(
2
),
880
886
(
2012
).
18.
J. R.
Caram
,
H.
Zheng
,
P. D.
Dahlberg
,
B. S.
Rolczynski
,
G. B.
Griffin
,
D. S.
Dolzhnikov
,
D. V.
Talapin
, and
G. S.
Engel
, “
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
140
(
8
),
084701
(
2014
).
19.
J. R.
Caram
,
H.
Zheng
,
P. D.
Dahlberg
,
B. S.
Rolczynski
,
G. B.
Griffin
,
A. F.
Fidler
,
D. S.
Dolzhnikov
,
D. V.
Talapin
, and
G. S.
Engel
, “
Persistent interexcitonic quantum coherence in CdSe quantum dots
,”
J. Phys. Chem. Lett.
5
(
1
),
196
204
(
2014
).
20.
S.
Palato
,
H.
Seiler
,
P.
Nijjar
,
O.
Prezhdo
, and
P.
Kambhampati
, “
Atomic fluctuations in electronic materials revealed by dephasing
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11940
(
2020
).
21.
S.
Dong
,
D.
Trivedi
,
S.
Chakrabortty
,
T.
Kobayashi
,
Y.
Chan
,
O. V.
Prezhdo
, and
Z.-H.
Loh
, “
Observation of an excitonic quantum coherence in CdSe nanocrystals
,”
Nano Lett.
15
(
10
),
6875
6882
(
2015
).
22.
P.
Kambhampati
, “
Unraveling the structure and dynamics of excitons in semiconductor quantum dots
,”
Acc. Chem. Res.
44
(
1
),
1
13
(
2011
).
23.
T. A.
Gellen
,
J.
Lem
, and
D. B.
Turner
, “
Probing homogeneous line broadening in CdSe nanocrystals using multidimensional electronic spectroscopy
,”
Nano Lett.
17
(
5
),
2809
2815
(
2017
).
24.
D. J.
Trivedi
,
L.
Wang
, and
O. V.
Prezhdo
, “
Auger-mediated electron relaxation is robust to deep hole traps: Time-domain ab initio study of CdSe quantum dots
,”
Nano Lett.
15
,
2086
2091
(
2015
).
25.
M.
Righetto
,
L.
Bolzonello
,
A.
Volpato
,
G.
Amoruso
,
A.
Panniello
,
E.
Fanizza
,
M.
Striccoli
, and
E.
Collini
, “
Deciphering hot- and multi-exciton dynamics in core–shell QDs by 2D electronic spectroscopies
,”
Phys. Chem. Chem. Phys.
20
(
27
),
18176
18183
(
2018
).
26.
H.
Seiler
,
S.
Palato
,
C.
Sonnichsen
,
H.
Baker
, and
P.
Kambhampati
, “
Seeing multiexcitons through sample inhomogeneity: Band-edge biexciton structure in CdSe nanocrystals revealed by two-dimensional electronic spectroscopy
,”
Nano Lett.
18
(
5
),
2999
3006
(
2018
).
27.
C.
Lin
,
K.
Gong
,
D. F.
Kelley
, and
A. M.
Kelley
, “
Size-dependent exciton–phonon coupling in CdSe nanocrystals through resonance Raman excitation profile analysis
,”
J. Phys. Chem. C
119
(
13
),
7491
7498
(
2015
).
28.
O. V.
Prezhdo
, “
Photoinduced dynamics in semiconductor quantum dots: Insights from time-domain ab initio studies
,”
Acc. Chem. Res.
42
(
12
),
2005
2016
(
2009
).
29.
N.
Lenngren
,
M. A.
Abdellah
,
K.
Zheng
,
M. J.
Al-Marri
,
D.
Zigmantas
,
K.
Žídek
, and
T.
Pullerits
, “
Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy
,”
Phys. Chem. Chem. Phys.
18
(
37
),
26199
26204
(
2016
).
30.
A. L.
Efros
and
M.
Rosen
, “
The electronic structure of semi-conducting nanocrystal
,”
Annu. Rev. Mater. Sci.
30
,
475
521
(
2000
).
31.
P. C.
Sercel
and
A. L.
Efros
, “
Band-edge exciton in CdSe and other II–VI and III–V compound semiconductor nanocrystals—Revisited
,”
Nano Lett.
18
(
7
),
4061
4068
(
2018
).
32.
J.
Kim
,
C. Y.
Wong
, and
G. D.
Scholes
, “
Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots
,”
Acc. Chem. Res.
42
(
8
),
1037
1046
(
2009
).
33.
C. Y.
Wong
and
G. D.
Scholes
, “
Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals
,”
J. Lumin.
131
(
3
),
366
374
(
2011
).
34.
H.
Ma
,
Z.
Jin
,
Z.
Zhang
,
G.
Li
, and
G.
Ma
, “
Exciton spin relaxation in colloidal CdSe quantum dots at room temperature
,”
J. Phys. Chem. A
116
(
9
),
2018
2023
(
2012
).
35.
V. M.
Huxter
,
V.
Kovalevskij
, and
G. D.
Scholes
, “
Dynamics within the exciton fine structure of colloidal CdSe quantum dots
,”
J. Phys. Chem. B
109
(
43
),
20060
20063
(
2005
).
36.
E.
Collini
,
H.
Gattuso
,
L.
Bolzonello
,
A.
Casotto
,
A.
Volpato
,
C. N.
Dibenedetto
,
E.
Fanizza
,
M.
Striccoli
, and
F.
Remacle
, “
Quantum phenomena in nanomaterials: Coherent superpositions of fine structure states in CdSe nanocrystals at room temperature
,”
J. Phys. Chem. C
123
,
31286
31293
(
2019
).
37.
E.
Collini
,
H.
Gattuso
,
Y.
Kolodny
,
L.
Bolzonello
,
A.
Volpato
,
H. T.
Fridman
,
S.
Yochelis
,
M.
Mor
,
J.
Dehnel
,
E.
Lifshitz
,
Y.
Paltiel
,
R. D.
Levine
, and
F.
Remacle
, “
Room-temperature inter-dot coherent dynamics in multilayer quantum dot materials
,”
J. Phys. Chem. C
124
(
29
),
16222
16231
(
2020
).
38.
H.
Gattuso
,
R. D.
Levine
, and
F.
Remacle
, “
Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
35
),
21022
(
2020
).
39.
J. M.
Luttinger
and
W.
Kohn
, “
Motion of electrons and holes in perturbed periodic fields
,”
Phys. Rev.
97
(
4
),
869
883
(
1955
).
40.
A. L.
Efros
,
M.
Rosen
,
M.
Kuno
,
M.
Nirmal
,
D. J.
Norris
, and
M.
Bawendi
, “
Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states
,”
Phys. Rev. B
54
(
7
),
4843
4856
(
1996
).
41.
C. Y.
Wong
and
G. D.
Scholes
, “
Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy
,”
J. Phys. Chem. A
115
(
16
),
3797
3806
(
2011
).
42.
H.
Gattuso
,
B.
Fresch
,
R. D.
Levine
, and
F.
Remacle
, “
Coherent exciton dynamics in ensembles of size-dispersed CdSe quantum dot dimers probed via ultrafast spectroscopy: A quantum computational study
,”
Appl. Sci.
10
(
4
),
1328
(
2020
).
43.
S.
Mukamel
,
Principle of Non-Linear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
44.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
45.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
46.
A. M.
Brańczyk
,
D. B.
Turner
, and
G. D.
Scholes
, “
Crossing disciplines—A view on two-dimensional optical spectroscopy
,”
Ann. Phys.
526
(
1-2
),
31
49
(
2014
).
47.
J.
Jasieniak
,
M.
Califano
, and
S. E.
Watkins
, “
Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals
,”
ACS Nano
5
(
7
),
5888
5902
(
2011
).
48.
C. Y.
Wong
,
J.
Kim
,
P. S.
Nair
,
M. C.
Nagy
, and
G. D.
Scholes
, “
Relaxation in the exciton fine structure of semiconductor nanocrystals
,”
J. Phys. Chem. C
113
(
3
),
795
811
(
2009
).
49.
V. I.
Klimov
, “
Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals
,”
J. Phys. Chem. B
104
(
26
),
6112
6123
(
2000
).
50.
C. R.
Hall
,
J. O.
Tollerud
,
H. M.
Quiney
, and
J. A.
Davis
, “
Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells
,”
New J. Phys.
15
(
4
),
045028
(
2013
).
51.
J. A.
Davis
,
C. R.
Hall
,
L. V.
Dao
,
K. A.
Nugent
,
H. M.
Quiney
,
H. H.
Tan
, and
C.
Jagadish
, “
Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells
,”
J. Chem. Phys.
135
(
4
),
044510
(
2011
).
52.
K.
Hyeon-Deuk
and
O. V.
Prezhdo
, “
Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: An ab initio time-domain study
,”
ACS Nano
6
(
2
),
1239
1250
(
2012
).
53.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
, “
Two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
297
(
3
),
307
313
(
1998
).
54.
The Unitary Group for the Evaluation of the Electronic Energy Matrix Elements
, Lecture Notes in Chemistry Vol. 22, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
55.
Y.
Alhassid
and
R. D.
Levine
, “
Connection between the maximal entropy and the scattering theoretic analyses of collision processes
,”
Phys. Rev. A
18
(
1
),
89
116
(
1978
).
56.
S. V.
Kilina
,
D. S.
Kilin
, and
O. V.
Prezhdo
, “
Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain density functional theory of charge carrier relaxation
,”
ACS Nano
3
(
1
),
93
99
(
2009
).
57.
J.
Cui
,
A. P.
Beyler
,
I.
Coropceanu
,
L.
Cleary
,
T. R.
Avila
,
Y.
Chen
,
J. M.
Cordero
,
S. L.
Heathcote
,
D. K.
Harris
,
O.
Chen
,
J.
Cao
, and
M. G.
Bawendi
, “
Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton–phonon coupling and the optimization of spectral linewidths
,”
Nano Lett.
16
(
1
),
289
296
(
2016
).
58.
M. R.
Salvador
,
M. W.
Graham
, and
G. D.
Scholes
, “
Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots
,”
J. Chem. Phys.
125
(
18
),
184709
(
2006
).
59.
L. J.
McKimmie
,
C. N.
Lincoln
,
J.
Jasieniak
, and
T. A.
Smith
, “
Three-pulse photon echo peak shift measurements of capped CdSe quantum dots
,”
J. Phys. Chem. C
114
(
1
),
82
88
(
2010
).
60.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mancal
,
Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy
(
Wiley-VCH
,
Weinhem
,
2013
).
61.
A.
Volpato
,
L.
Bolzonello
,
E.
Meneghin
, and
E.
Collini
, “
Global analysis of coherence and population dynamics in 2D electronic spectroscopy
,”
Opt. Express
24
(
21
),
24773
24785
(
2016
).
62.
E.
Cohen
,
P.
Komm
,
N.
Rosenthal-Strauss
,
J.
Dehnel
,
E.
Lifshitz
,
S.
Yochelis
,
R. D.
Levine
,
F.
Remacle
,
B.
Fresch
,
G.
Marcus
, and
Y.
Paltiel
, “
Fast energy transfer in CdSe quantum dot layered structures: Controlling coupling with covalent-bond organic linkers
,”
J. Phys. Chem. C
122
(
10
),
5753
5758
(
2018
).
63.
E.
Cohen
,
I.
Gdor
,
E.
Romero
,
S.
Yochelis
,
R.
van Grondelle
, and
Y.
Paltiel
, “
Achieving exciton delocalization in quantum dot aggregates using organic linker molecules
,”
J. Phys. Chem. Lett.
8
(
5
),
1014
1018
(
2017
).
64.
E.
Cohen
,
M.
Gruber
,
E.
Romero
,
S.
Yochelis
,
R.
van Grondelle
, and
Y.
Paltiel
, “
Properties of self-assembled hybrid organic molecule/quantum dot multilayered structures
,”
J. Phys. Chem. C
118
(
44
),
25725
25730
(
2014
).
65.
L.
Bolzonello
,
A.
Volpato
,
E.
Meneghin
, and
E.
Collini
, “
Versatile setup for high-quality rephasing, non-rephasing, and double quantum 2D electronic spectroscopy
,”
J. Opt. Soc. Am. B
34
(
6
),
1223
1233
(
2017
).
66.
Y.
Kobayashi
,
C.-H.
Chuang
,
C.
Burda
, and
G. D.
Scholes
, “
Exploring ultrafast electronic processes of quasi-type II nanocrystals by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. C
118
(
29
),
16255
16263
(
2014
).
67.
G. B.
Griffin
,
S.
Ithurria
,
D. S.
Dolzhnikov
,
A.
Linkin
,
D. V.
Talapin
, and
G. S.
Engel
, “
Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power
,”
J. Chem. Phys.
138
(
1
),
014705
(
2013
).
68.
K. W.
Stone
,
K.
Gundogdu
,
D. B.
Turner
,
X.
Li
,
S. T.
Cundiff
, and
K. A.
Nelson
, “
Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells
,”
Science
324
(
5931
),
1169
(
2009
).
69.
D. B.
Turner
and
K. A.
Nelson
, “
Coherent measurements of high-order electronic correlations in quantum wells
,”
Nat
466
(
7310
),
1089
1092
(
2010
).
70.
K.
Hao
,
L.
Xu
,
P.
Nagler
,
A.
Singh
,
K.
Tran
,
C. K.
Dass
,
C.
Schüller
,
T.
Korn
,
X.
Li
, and
G.
Moody
, “
Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2
,”
Nano Lett.
16
(
8
),
5109
5113
(
2016
).
71.
A. E.
Böhmer
,
F.
Hardy
,
F.
Eilers
,
D.
Ernst
,
P.
Adelmann
,
P.
Schweiss
,
T.
Wolf
, and
C.
Meingast
, “
Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe
,”
Phys. Rev. B
87
(
18
),
180505
(
2013
).
72.
A.
Volpato
and
E.
Collini
, “
Time-frequency methods for coherent spectroscopy
,”
Opt. Express
23
(
15
),
20040
20050
(
2015
).
73.
A.
Volpato
and
E.
Collini
, “
Optimization and selection of time-frequency transforms for wave-packet analysis in ultrafast spectroscopy
,”
Opt. Express
27
(
3
),
2975
2987
(
2019
).
74.
E.
Romero
,
J.
Prior
,
A. W.
Chin
,
S. E.
Morgan
,
V. I.
Novoderezhkin
,
M. B.
Plenio
, and
R.
van Grondelle
, “
Quantum–coherent dynamics in photosynthetic charge separation revealed by wavelet analysis
,”
Sci. Rep.
7
(
1
),
2890
(
2017
).
75.
E.
Meneghin
,
A.
Volpato
,
L.
Cupellini
,
L.
Bolzonello
,
S.
Jurinovich
,
V.
Mascoli
,
D.
Carbonera
,
B.
Mennucci
, and
E.
Collini
, “
Coherence in carotenoid-to-chlorophyll energy transfer
,”
Nat. Commun.
9
(
1
),
3160
(
2018
).
76.
J. D.
Gaynor
,
J.
Sandwisch
, and
M.
Khalil
, “
Vibronic coherence evolution in multidimensional ultrafast photochemical processes
,”
Nat. Commun.
10
(
1
),
5621
(
2019
).
77.
Q.
Shie
and
C.
Dapang
, “
Joint time-frequency analysis
,”
IEEE Signal Process. Mag.
16
(
2
),
52
67
(
1999
).
78.
K.
Gröchenig
,
Foundations of Time-Frequency Analysis
(
Birkhäuser
,
Boston
,
2001
).
79.
P.
Kambhampati
, “
Hot exciton relaxation dynamics in semiconductor quantum dots: Radiationless transitions on the nanoscale
,”
J. Phys. Chem. C
115
(
45
),
22089
22109
(
2011
).
80.
A. M.
Kelley
, “
Electron–phonon coupling in CdSe nanocrystals
,”
J. Phys. Chem. Lett.
1
(
9
),
1296
1300
(
2010
).
81.
A.
Liu
,
D. B.
Almeida
,
W. K.
Bae
,
L. A.
Padilha
, and
S. T.
Cundiff
, “
Non-markovian exciton-phonon interactions in core-shell colloidal quantum dots at femtosecond timescales
,”
Phys. Rev. Lett.
123
(
5
),
057403
(
2019
).
82.
A. M.
Kelley
, “
Exciton-optical phonon coupling in II-VI semiconductor nanocrystals
,”
J. Chem. Phys.
151
(
14
),
140901
(
2019
).
83.
S.
Pal
,
D. J.
Trivedi
,
A. V.
Akimov
,
B.
Aradi
,
T.
Frauenheim
, and
O. V.
Prezhdo
, “
Nonadiabatic molecular dynamics for thousand atom systems: A tight-binding approach toward PYXAID
,”
J. Chem. Theory Comput.
12
(
4
),
1436
1448
(
2016
).
84.
J.
Seibt
and
T.
Pullerits
, “
Beating signals in 2D spectroscopy: Electronic or nuclear coherences? Application to a quantum dot model system
,”
J. Phys. Chem. C
117
(
36
),
18728
18737
(
2013
).

Supplementary Material

You do not currently have access to this content.