The complete-active-space self-consistent field (CASSCF) method is a canonical electronic structure theory that holds a central place in conceptualizing and practicing first principles simulations. For application to realistic molecules, however, the CASSCF must be approximated to circumvent its exponentially scaling computational costs. Applying the many-body expansion—also known as the method of increments—to CASSCF (iCASSCF) has been shown to produce a polynomially scaling method that retains much of the accuracy of the parent theory and is capable of treating full valence active spaces. Due to an approximation made in the orbital gradient, the orbital parameters of the original iCASSCF formulation could not be variationally optimized, which limited the accuracy of its nuclear gradient. Herein, a variational iCASSCF is introduced and implemented, where all parameters are fully optimized during energy minimization. This method is able to recover electronic correlations from the full valence space in large systems, produce accurate gradients, and optimize stable geometries as well as transition states. Demonstrations on challenging test cases, such as the oxoMn(salen)Cl complex with 84 electrons in 84 orbitals and the automerization of cyclobutadiene, show that the fully variational iCASSCF is a powerful tool for describing challenging molecular chemistries.

1.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
John Wiley & Sons, Ltd.
,
2000
).
2.
B. O.
Roos
,
Int. J. Quantum Chem.
18
,
175
189
(
1980
).
3.
B. O.
Roos
,
P. R.
Taylor
, and
P. E.
Sigbahn
,
Chem. Phys.
48
,
157
173
(
1980
).
4.
H.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
5063
(
1985
).
5.
M. W.
Schmidt
and
M. S.
Gordon
,
Annu. Rev. Phys. Chem.
49
,
233
266
(
1998
).
6.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
,
Chem. Rev.
112
,
108
181
(
2012
).
7.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
de Jong
,
J. Chem. Phys.
147
,
184111
(
2017
).
8.
J.
Olsen
,
B. O.
Roos
,
P.
Jörgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
2192
(
1988
).
9.
P. A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
5482
(
1990
).
10.
M. J.
Bearpark
,
F.
Ogliaro
,
T.
Vreven
,
M.
Boggio-Pasqua
,
M. J.
Frisch
,
S. M.
Larkin
,
M.
Morrison
, and
M. A.
Robb
,
J. Photochem. Photobiol., A
190
,
207
227
(
2007
).
11.
P. Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
12.
V.
Sauri
,
L.
Serrano-Andrés
,
A. R. M.
Shahi
,
L.
Gagliardi
,
S.
Vancoillie
, and
K.
Pierloot
,
J. Chem. Theory Comput.
7
,
153
168
(
2011
).
13.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
,
J. Chem. Phys.
135
,
044128
(
2011
).
14.
G.
Li Manni
,
D.
Ma
,
F.
Aquilante
,
J.
Olsen
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
9
,
3375
3384
(
2013
).
15.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
16.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
17.
S. R.
White
,
Phys. Rev. B
48
,
10345
10356
(
1993
).
18.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
4130
(
1999
).
19.
U.
Schollwöck
,
Rev. Mod. Phys.
77
,
259
315
(
2005
).
20.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
014107
(
2008
).
21.
U.
Schollwock
,
Ann. Phys.
326
(
1
),
96
192
(
2011
).
22.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
23.
T.
Zhang
and
F. A.
Evangelista
,
J. Chem. Theory Comput.
12
,
4326
4337
(
2016
).
24.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
144
,
161106
(
2016
).
25.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Theory Comput.
13
,
5354
5366
(
2017
).
26.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
3674
3680
(
2016
).
27.
J. E. T.
Smith
,
B.
Mussard
,
A. A.
Holmes
, and
S.
Sharma
,
J. Chem. Theory Comput.
13
,
5468
5478
(
2017
).
28.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
1604
(
2017
).
29.
A. D.
Chien
,
A. A.
Holmes
,
M.
Otten
,
C. J.
Umrigar
,
S.
Sharma
, and
P. M.
Zimmerman
,
J. Phys. Chem. A
122
,
2714
2722
(
2018
).
30.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
,
J. Chem. Phys.
149
,
214110
(
2018
).
31.
K. R.
Brorsen
,
J. Chem. Theory Comput.
16
,
2379
2388
(
2020
).
32.
D. A.
Mazziotti
,
J. Chem. Phys.
126
,
184101
(
2007
).
33.
A. E.
DePrince
,
E.
Kamarchik
, and
D. A.
Mazziotti
,
J. Chem. Phys.
128
,
234103
(
2008
).
34.
D. A.
Mazziotti
,
Phys. Rev. A
81
,
062515
(
2010
).
35.
J. W.
Mullinax
,
E.
Epifanovsky
,
G.
Gidofalvi
, and
A. E.
DePrince
,
J. Chem. Theory Comput.
15
,
276
289
(
2019
).
36.
H.
Stoll
,
Chem. Phys. Lett.
191
,
548
552
(
1992
).
37.
H.
Stoll
,
Phys. Rev. B
46
,
6700
6704
(
1992
).
38.
H.
Stoll
,
J. Chem. Phys.
97
,
8449
8454
(
1992
).
39.
A. B.
Mukhopadhyay
,
M.
Dolg
, and
C.
Oligschleger
,
J. Chem. Phys.
120
,
8734
8739
(
2004
).
40.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
41.
J. J.
Eriksen
,
F.
Lipparini
, and
J.
Gauss
,
J. Phys. Chem. Lett.
8
,
4633
4639
(
2017
).
42.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
14
,
5180
5191
(
2018
).
43.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
15
,
4873
4884
(
2019
).
44.
P. M.
Zimmerman
,
J. Chem. Phys.
146
,
104102
(
2017
).
45.
P. M.
Zimmerman
,
J. Chem. Phys.
146
,
224104
(
2017
).
46.
P. M.
Zimmerman
,
J. Phys. Chem. A
121
,
4712
4720
(
2017
).
47.
P. M.
Zimmerman
and
A. E.
Rask
,
J. Chem. Phys.
150
,
244117
(
2019
).
48.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
,
J. Chem. Phys.
141
,
014108
(
2014
).
49.
K. U.
Lao
,
K.-Y.
Liu
,
R. M.
Richard
, and
J. M.
Herbert
,
J. Chem. Phys.
144
,
164105
(
2016
).
50.
K.-Y.
Liu
and
J. M.
Herbert
,
J. Chem. Phys.
147
,
161729
(
2017
).
51.
J. M.
Herbert
,
J. Chem. Phys.
151
,
170901
(
2019
).
52.
K.-Y.
Liu
and
J. M.
Herbert
,
J. Chem. Theory Comput.
16
,
475
487
(
2020
).
53.
K.
Kitaura
,
S.-I.
Sugiki
,
T.
Nakano
,
Y.
Komeiji
, and
M.
Uebayasi
,
Chem. Phys. Lett.
336
,
163
170
(
2001
).
54.
D. G.
Fedorov
,
T.
Ishida
,
M.
Uebayasi
, and
K.
Kitaura
,
J. Phys. Chem. A
111
,
2722
2732
(
2007
).
55.
T.
Nagata
,
D. G.
Fedorov
, and
K.
Kitaura
,
Chem. Phys. Lett.
475
,
124
131
(
2009
).
56.
T.
Nagata
,
D. G.
Fedorov
, and
K.
Kitaura
,
Chem. Phys. Lett.
492
,
302
308
(
2010
).
57.
T.
Nagata
,
K.
Brorsen
,
D. G.
Fedorov
,
K.
Kitaura
, and
M. S.
Gordon
,
J. Chem. Phys.
134
,
124115
(
2011
).
58.
P.
Pulay
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
169
181
(
2014
).
59.
S.
Keller
,
K.
Boguslawski
,
T.
Janowski
,
M.
Reiher
, and
P.
Pulay
,
J. Chem. Phys.
142
,
244104
(
2015
).
60.
V.
Guner
,
K. S.
Khuong
,
A. G.
Leach
,
P. S.
Lee
,
M. D.
Bartberger
, and
K. N.
Houk
,
J. Phys. Chem. A
107
,
11445
11459
(
2003
).
61.
F.
Fracchia
,
R.
Cimiraglia
, and
C.
Angeli
,
J. Phys. Chem. A
119
,
5490
5495
(
2015
).
62.
C. W.
Bauschlicher
and
S. R.
Langhoff
,
J. Chem. Phys.
89
,
4246
4254
(
1988
).
63.
A.
Sanchez de Meras
,
M.-B.
Lepetit
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
172
,
163
168
(
1990
).
64.
W. J.
Glover
,
J. Chem. Phys.
141
,
171102
(
2014
).
65.
J.
Cullen
,
Chem. Phys.
202
,
217
229
(
1996
).
66.
J.
Gerratt
,
D. L.
Cooper
,
P. B.
Karadakov
, and
M.
Raimondi
,
Chem. Soc. Rev.
26
,
87
100
(
1997
).
67.
T.
Van Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
115
,
7814
7821
(
2001
).
68.
G. J. O.
Beran
,
B.
Austin
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Phys. Chem. A
109
,
9183
9192
(
2005
).
69.
K. V.
Lawler
,
D. W.
Small
, and
M.
Head-Gordon
,
J. Phys. Chem. A
114
,
2930
2938
(
2010
).
70.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
10678
(
1998
).
71.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
72.
J. A.
Parkhill
,
K.
Lawler
, and
M.
Head-Gordon
,
J. Chem. Phys.
130
,
084101
(
2009
).
73.
Y.
Shao
 et al.,
Mol. Phys.
113
,
184
215
(
2015
).
74.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
363
(
1993
).
75.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
152
(
1998
).
76.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2012.1, a package of ab initio programs, see https://www.molpro.net,
2012
.
77.
M.
Palucki
,
N. S.
Finney
,
P. J.
Pospisil
,
M. L.
Güler
,
T.
Ishida
, and
E. N.
Jacobsen
,
J. Am. Chem. Soc.
120
,
948
954
(
1998
).
78.
E. M.
McGarrigle
and
D. G.
Gilheany
,
Chem. Rev.
105
,
1563
1602
(
2005
).
79.
C.
Linde
,
B.
Åkermark
,
P.-O.
Norrby
, and
M.
Svensson
,
J. Am. Chem. Soc.
121
,
5083
5084
(
1999
).
80.
Y. G.
Abashkin
,
J. R.
Collins
, and
S. K.
Burt
,
Inorg. Chem.
40
,
4040
4048
(
2001
).
81.
J.
Ivanic
,
J. R.
Collins
, and
S. K.
Burt
,
J. Phys. Chem. A
108
,
2314
2323
(
2004
).
82.
J. S.
Sears
and
C. D.
Sherrill
,
J. Chem. Phys.
124
,
144314
(
2006
).
83.
S.
Wouters
,
T.
Bogaerts
,
P.
Van Der Voort
,
V.
Van Speybroeck
, and
D.
Van Neck
,
J. Chem. Phys.
140
,
241103
(
2014
).
84.
C. J.
Stein
and
M.
Reiher
,
J. Chem. Theory Comput.
12
,
1760
1771
(
2016
).
85.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
,
J. Chem. Theory Comput.
13
,
488
498
(
2017
).
86.
P.
Zimmerman
,
J. Chem. Theory Comput.
9
,
3043
3050
(
2013
).
87.
P. M.
Zimmerman
,
J. Chem. Phys.
138
,
184102
(
2013
).
88.
P. M.
Zimmerman
,
J. Comput. Chem.
36
,
601
611
(
2015
).
89.
C.
Aldaz
,
J. A.
Kammeraad
, and
P. M.
Zimmerman
,
Phys. Chem. Chem. Phys.
20
,
27394
27405
(
2018
).
90.
P.
Pinski
and
F.
Neese
,
J. Chem. Phys.
150
,
164102
(
2019
).
91.
B. Q.
Pham
and
M. S.
Gordon
,
J. Chem. Theory Comput.
16
,
1039
1054
(
2020
).
92.
M.
Izakovic
,
J.
Šima
, and
M.
Žitnanský
,
J. Coord. Chem.
58
,
1039
1046
(
2005
).
93.
L.
Rigamonti
,
F.
Demartin
,
A.
Forni
,
S.
Righetto
, and
A.
Pasini
,
Inorg. Chem.
45
,
10976
10989
(
2006
).
94.
A.
Trujillo
,
M.
Fuentealba
,
D.
Carrillo
,
C.
Manzur
,
I.
Ledoux-Rak
,
J.-R.
Hamon
, and
J.-Y.
Saillard
,
Inorg. Chem.
49
,
2750
2764
(
2010
).
95.
S.
Aono
,
M.
Nakagaki
, and
S.
Sakaki
,
Phys. Chem. Chem. Phys.
19
,
16831
16849
(
2017
).
96.
I. B.
Bersuker
,
Chem. Rev.
101
,
1067
1114
(
2001
).
97.
A. J.
Johansson
,
J. Chem. Educ.
90
,
63
69
(
2013
).
98.
G.
Maier
,
R.
Wolf
, and
H.-O.
Kalinowski
,
Angew. Chem., Int. Ed. Engl.
31
,
738
740
(
1992
).
99.
M.
Eckert-Maksic
,
M.
Vazdar
,
M.
Barbatti
,
H.
Lischka
, and
Z. B.
Maksic
,
J. Chem. Phys.
125
,
064310
(
2006
).
100.
O.
Demel
and
J.
Pittner
,
J. Chem. Phys.
124
,
144112
(
2006
).
101.
O.
Demel
,
K. R.
Shamasundar
,
L.
Kong
, and
M.
Nooijen
,
J. Phys. Chem. A
112
,
11895
11902
(
2008
).
102.
P. B.
Karadakov
,
J. Phys. Chem. A
112
,
7303
7309
(
2008
).
103.
T.
Saito
,
S.
Nishihara
,
Y.
Kitagawa
,
T.
Kawakami
,
S.
Yamanaka
,
M.
Okumura
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
498
,
253
258
(
2010
).
104.
D. I.
Lyakh
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
501
,
166
171
(
2011
).
105.
F.
Fantuzzi
,
T. M.
Cardozo
, and
M. A. C.
Nascimento
,
ChemPhysChem
17
,
288
295
(
2016
).
106.
P. C.
Varras
and
P. S.
Gritzapis
,
Chem. Phys. Lett.
711
,
166
172
(
2018
).
107.
D. W.
Whitman
and
B. K.
Carpenter
,
J. Am. Chem. Soc.
104
,
6473
6474
(
1982
).

Supplementary Material

You do not currently have access to this content.