Hydrodynamic flow can have complex and far-reaching consequences on the rate of homogeneous nucleation. We present a general formalism for calculating the nucleation rates of simply sheared systems. We have derived an extension to the conventional Classical Nucleation Theory, explicitly embodying the shear rate. Seeded molecular dynamics simulations form the backbone of our approach. The framework can be used for moderate supercooling, at which temperatures brute-force methods are practically infeasible. The competing energetic and kinetic effects of shear arise naturally from the equations. We show how the theory can be used to identify shear regimes of ice nucleation behavior for the mW water model, unifying disparate trends reported in the literature. At each temperature, we define a crossover shear rate in the limit of 1000 s−1–10 000 s−1, beyond which the nucleation rate increases steadily up to a maximum, at the optimal shear rate. For 235 K, 240 K, 255 K, and 260 K, the optimal shear rates are in the range of ≈106 s−1–107 s−1. For very high shear rates beyond 108 s−1, nucleation is strongly inhibited. Our results indicate that the optimal shear rates have a non-monotonic dependence on temperature.

1.
A.
Penkova
,
W.
Pan
,
F.
Hodjaoglu
, and
P. G.
Vekilov
,
Ann. N. Y. Acad. Sci.
1077
,
214
(
2006
).
2.
F. G.
Woodhouse
and
R. E.
Goldstein
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
14132
(
2013
).
3.
C. R.
Berland
,
G. M.
Thurston
,
M.
Kondo
,
M. L.
Broide
,
J.
Pande
,
O.
Ogun
, and
G. B.
Benedek
,
Proc. Natl. Acad. Sci. U. S. A.
89
,
1214
(
1992
).
4.
J. A.
Baird
,
D.
Santiago-Quinonez
,
C.
Rinaldi
, and
L. S.
Taylor
,
Pharm. Res.
29
,
271
(
2011
).
5.
C.
Forsyth
,
P. A.
Mulheran
,
C.
Forsyth
,
M. D.
Haw
,
I. S.
Burns
, and
J.
Sefcik
,
Cryst. Growth Des.
15
,
94
(
2014
).
6.
A. L. G.
Ken Kelton
, in
Nucleation in Condensed Matter: Applications in Materials and Biology
, edited by
A. L.
Greer
(
Elsevier
,
2010
).
7.
B. J.
Ackerson
and
P. N.
Pusey
,
Phys. Rev. Lett.
61
,
1033
(
1988
).
8.
Y. D.
Yan
,
J. K. G.
Dhont
,
C.
Smits
, and
H. N. W.
Lekkerkerker
,
Physica A
202
,
68
(
1994
).
9.
M. D.
Haw
,
W. C. K.
Poon
, and
P. N.
Pusey
,
Phys. Rev. E
57
,
6859
(
1998
).
10.
R.
Amos
,
J.
Rarity
,
P.
Tapster
,
T.
Shepherd
, and
S.
Kitson
,
Phys. Rev. E
61
,
2929
(
2000
).
11.
T.
Palberg
,
W.
Mönch
,
J.
Schwarz
, and
P.
Leiderer
,
J. Chem. Phys.
102
,
5082
(
1995
).
12.
T.
Okubo
and
H.
Ishiki
,
J. Colloid Interface Sci.
211
,
151
(
1999
).
13.
R.
Blaak
,
S.
Auer
,
D.
Frenkel
, and
H.
Löwen
,
Phys. Rev. Lett.
93
,
068303
(
2004
).
14.
R.
Blaak
,
S.
Auer
,
D.
Frenkel
, and
H.
Löwen
,
J. Phys.: Condens. Matter
16
,
S3873
(
2004
).
15.
P. H. F.
Hansen
,
T.
Arnebrant
, and
L.
Bergström
,
Colloid Polym. Sci.
279
,
153
(
2001
).
16.
S.
Akio
,
O.
Seiji
,
T.
Akira
,
U.
Hiroshi
, and
T.
Ken’ichi
,
Int. J. Heat Mass Transfer
35
,
2527
(
1992
).
17.
X.
Liu
,
K.
Zhuang
,
S.
Lin
,
Z.
Zhang
, and
X.
Li
,
Crystals
7
,
128
(
2017
).
18.
J. J.
Cerdà
,
T.
Sintes
,
C.
Holm
,
C. M.
Sorensen
, and
A.
Chakrabarti
,
Phys. Rev. E
78
,
031403
(
2008
).
19.
A. V.
Mokshin
and
J.-L.
Barrat
,
J. Chem. Phys.
130
,
034502
(
2009
).
20.
R. S.
Graham
and
P. D.
Olmsted
,
Phys. Rev. Lett.
103
,
115702
(
2009
).
21.
Z.
Shao
,
J. P.
Singer
,
Y.
Liu
,
Z.
Liu
,
H.
Li
,
M.
Gopinadhan
,
C. S.
O’Hern
,
J.
Schroers
, and
C. O.
Osuji
,
Phys. Rev. E
91
,
020301
(
2015
).
22.
J.
Ruiz-Franco
,
J.
Marakis
,
N.
Gnan
,
J.
Kohlbrecher
,
M.
Gauthier
,
M. P.
Lettinga
,
D.
Vlassopoulos
, and
E.
Zaccarelli
,
Phys. Rev. Lett.
120
,
078003
(
2018
).
23.
A. V.
Mokshin
,
B. N.
Galimzyanov
, and
J.-L.
Barrat
,
Phys. Rev. E
87
,
062307
(
2013
).
24.
D.
Richard
and
T.
Speck
,
Sci. Rep.
5
,
14610
(
2015
).
25.
F.
Mura
and
A.
Zaccone
,
Phys. Rev. E
93
,
042803
(
2016
).
26.
S.
Luo
,
J.
Wang
, and
Z.
Li
,
J. Phys. Chem. B
124
,
3701
(
2020
).
27.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
,
Chem. Rev.
116
,
7078
(
2016
).
28.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
,
J. Chem. Phys.
141
,
18C529
(
2014
).
29.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
,
J. Chem. Phys.
142
,
194709
(
2015
).
30.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
,
J. Chem. Phys.
144
,
034501
(
2016
).
31.
M.
Volmer
and
A.
Weber
,
Z. Phys. Chem.
119
,
277
(
1926
).
32.
R.
Becker
and
W.
Döring
,
Ann. Phys.
416
,
719
(
1935
).
33.
Selected Works of Yakov Borisovich Zeldovich
, edited by
R. A.
Sunyaev
(
Princeton University Press
,
1992
), Vol. I, pp.
120
137
.
34.
X.-M.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
35.
X.-M.
Bai
and
M.
Li
,
J. Chem. Phys.
124
,
124707
(
2006
).
36.
K. F.
Kelton
,
A. L.
Greer
, and
C. V.
Thompson
,
J. Chem. Phys.
79
,
6261
(
1983
).
37.
K.
Kelton
,
Solid State Physics
(
Elsevier
,
1991
), pp.
75
177
.
38.
S.
Auer
and
D.
Frenkel
,
Nature
409
,
1020
(
2001
).
39.
S.
Auer
and
D.
Frenkel
,
J. Chem. Phys.
120
,
3015
(
2004
).
40.
A. C.
Pan
and
D.
Chandler
,
J. Phys. Chem. B
108
,
19681
(
2004
).
41.
J. E.
Moyal
,
J. R. Stat. Soc.: Ser. B (Methodol.)
11
,
150
(
1949
).
42.
N. V.
Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
).
43.
D.
Reguera
,
J. M.
Rubí
, and
J. M. G.
Vilar
,
J. Phys. Chem. B
109
,
21502
(
2005
).
44.
W. C.
Sandberg
and
D. M.
Heyes
,
Mol. Phys.
85
,
635
(
1995
).
45.
D. L.
Malandro
and
D. J.
Lacks
,
Phys. Rev. Lett.
81
,
5576
(
1998
).
46.
E.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
(
Cambridge University Press
,
2009
).
48.
A.
Dehaoui
,
B.
Issenmann
, and
F.
Caupin
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
12020
(
2015
).
49.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
50.
P.
Pugliese
,
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
,
J. Phys. Chem. B
121
,
10371
(
2017
).
51.
C.
Vega
,
J. L. F.
Abascal
,
M. M.
Conde
, and
J. L.
Aragones
,
Faraday Discuss.
141
,
251
(
2009
).
52.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
(
2011
).
53.
R.
Feistel
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
35
,
1021
(
2006
).
54.
C.
Vega
and
E. G.
Noya
,
J. Chem. Phys.
127
,
154113
(
2007
).
55.
A.
Zaragoza
,
M. M.
Conde
,
J. R.
Espinosa
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
,
J. Chem. Phys.
143
,
134504
(
2015
).
56.
P. M.
de Hijes
,
E.
Sanz
,
L.
Joly
,
C.
Valeriani
, and
F.
Caupin
,
J. Chem. Phys.
149
,
094503
(
2018
).
57.
S.
Balasubramanian
,
C. J.
Mundy
, and
M. L.
Klein
,
J. Chem. Phys.
105
,
11190
(
1996
).
58.
T.
Loerting
and
N.
Giovambattista
,
J. Phys.: Condens. Matter
18
,
R919
(
2006
).
59.
P.
Cao
,
J.
Wu
,
Z.
Zhang
,
B.
Fang
,
L.
Peng
,
T.
Li
,
T. J. H.
Vlugt
, and
F.
Ning
,
AIP Adv.
8
,
125108
(
2018
).
60.
P. A. F. P.
Moreira
,
R. G.
de Aguiar Veiga
, and
M.
de Koning
,
J. Chem. Phys.
150
,
044503
(
2019
).
61.
D.
Richard
and
T.
Speck
,
Phys. Rev. E
99
,
062801
(
2019
).
62.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
63.
E.
Maras
,
O.
Trushin
,
A.
Stukowski
,
T.
Ala-Nissila
, and
H.
Jónsson
,
Comput. Phys. Commun.
205
,
13
(
2016
).
64.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
65.
R.
Goswami
,
A.
Goswami
, and
J. K.
Singh
,
J. Chem. Inf. Model.
60
,
2169
(
2020
).
66.
T.
Giorgino
,
J. Open Source Software
4
,
1698
(
2019
).
67.
D. J.
Evans
and
G. P.
Morriss
,
Phys. Rev. A
30
,
1528
(
1984
).
68.
A. W.
Lees
and
S. F.
Edwards
,
J. Phys. C: Solid State Phys.
5
,
1921
(
1972
).
69.
P. J.
Daivis
and
B. D.
Todd
,
J. Chem. Phys.
124
,
194103
(
2006
).
70.
H.
Huh
,
C. G.
Park
,
C. S.
Lee
, and
Y. T.
Keum
,
Engineering Plasticity and Its Applications from Nanoscale to Macroscale
(
World Scientific
,
2009
).
71.
V.
Kumar
,
B.
Nazari
,
D.
Bousfield
, and
M.
Toivakka
,
Appl. Rheol.
26
,
43534
(
2016
).
72.
V.
Holten
,
D. T.
Limmer
,
V.
Molinero
, and
M. A.
Anisimov
,
J. Chem. Phys.
138
,
174501
(
2013
).

Supplementary Material

You do not currently have access to this content.