Advances in nanophotonics, quantum optics, and low-dimensional materials have enabled precise control of light–matter interactions down to the nanoscale. Combining concepts from each of these fields, there is now an opportunity to create and manipulate photonic matter via strong coupling of molecules to the electromagnetic field. Toward this goal, here we demonstrate a first principles framework to calculate polaritonic excited-state potential-energy surfaces, transition dipole moments, and transition densities for strongly coupled light–matter systems. In particular, we demonstrate the applicability of our methodology by calculating the polaritonic excited-state manifold of a formaldehyde molecule strongly coupled to an optical cavity. This proof-of-concept calculation shows how strong coupling can be exploited to alter photochemical reaction pathways by influencing avoided crossings with tuning of the cavity frequency and coupling strength. Therefore, by introducing an ab initio method to calculate excited-state potential-energy surfaces, our work opens a new avenue for the field of polaritonic chemistry.

1.
T. W.
Ebbesen
, “
Hybrid light–matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
2.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
3.
K.
Stranius
,
M.
Hertzog
, and
K.
Börjesson
, “
Selective manipulation of electronically excited states through strong light–matter interactions
,”
Nat. Commun.
9
,
2273
(
2018
).
4.
F.
Peyskens
and
D.
Englund
, “
Quantum photonics model for nonclassical light generation using integrated nanoplasmonic cavity-emitter systems
,”
Phys. Rev. A
97
,
063844
(
2018
).
5.
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
H.
Hiura
,
C.
Genet
, and
T. W.
Ebbesen
, “
Multiple Rabi splittings under ultrastrong vibrational coupling
,”
Phys. Rev. Lett.
117
,
153601
(
2016
).
6.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
7.
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
de Nijs
,
R.
Esteban
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Single-molecule optomechanics in “picocavities”
,”
Science
354
,
726
729
(
2016
).
8.
E.
Kazuma
,
J.
Jung
,
H.
Ueba
,
M.
Trenary
, and
Y.
Kim
, “
Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule
,”
Science
360
,
521
526
(
2018
).
9.
O. S.
Ojambati
,
R.
Chikkaraddy
,
W. D.
Deacon
,
M.
Horton
,
D.
Kos
,
V. A.
Turek
,
U. F.
Keyser
, and
J. J.
Baumberg
, “
Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity
,”
Nat. Commun.
10
,
1049
(
2019
).
10.
M.-E.
Kleemann
,
R.
Chikkaraddy
,
E. M.
Alexeev
,
D.
Kos
,
C.
Carnegie
,
W.
Deacon
,
A. C.
de Pury
,
C.
Große
,
B.
de Nijs
,
J.
Mertens
,
A. I.
Tartakovskii
, and
J. J.
Baumberg
, “
Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature
,”
Nat. Commun.
8
,
1296
(
2017
).
11.
D. N.
Basov
,
R. D.
Averitt
, and
D.
Hsieh
, “
Towards properties on demand in quantum materials
,”
Nat. Mater.
16
,
1077
(
2017
).
12.
H.
Memmi
,
O.
Benson
,
S.
Sadofev
, and
S.
Kalusniak
, “
Strong coupling between surface plasmon polaritons and molecular vibrations
,”
Phys. Rev. Lett.
118
,
126802
(
2017
).
13.
T.
Christensen
,
W.
Yan
,
A.-P.
Jauho
,
M.
Soljačić
, and
N. A.
Mortensen
, “
Quantum corrections in nanoplasmonics: Shape, scale, and material
,”
Phys. Rev. Lett.
118
,
157402
(
2017
).
14.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard
 III
, and
H. A.
Atwater
, “
Theoretical predictions for hot-carrier generation from surface plasmon decay
,”
Nat. Commun.
5
,
5788
(
2014
).
15.
A.
Bisht
,
J.
Cuadra
,
M.
Wersäll
,
A.
Canales
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems
,”
Nano Lett.
19
,
189
196
(
2019
).
16.
D. M.
Coles
,
Y.
Yang
,
Y.
Wang
,
R. T.
Grant
,
R. A.
Taylor
,
S. K.
Saikin
,
A.
Aspuru-Guzik
,
D. G.
Lidzey
,
J. K.-H.
Tang
, and
J. M.
Smith
, “
Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode
,”
Nat. Commun.
5
,
5561
(
2014
).
17.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
,”
Sci. Adv.
4
,
eaas9552
(
2018
).
18.
J.
Flick
,
N.
Rivera
, and
P.
Narang
, “
Strong light-matter coupling in quantum chemistry and quantum photonics
,”
Nanophotonics
7
,
1479
1501
(
2018
).
19.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Suppressing photochemical reactions with quantized light fields
,”
Nat. Commun.
7
,
13841
(
2016
).
20.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Many-molecule reaction triggered by a single photon in polaritonic chemistry
,”
Phys. Rev. Lett.
119
,
136001
(
2017
).
21.
A.
Mandal
and
P.
Huo
, “
Investigating new reactivities enabled by polariton photochemistry
,”
J. Phys. Chem. Lett.
10
,
5519
5529
(
2019
).
22.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
23.
M.
Kowalewski
,
K.
Bennett
, and
S.
Mukamel
, “
Cavity femtochemistry: Manipulating nonadiabatic dynamics at avoided crossings
,”
J. Phys. Chem. Lett.
7
,
2050
2054
(
2016
).
24.
M.
Kowalewski
,
K.
Bennett
, and
S.
Mukamel
, “
Non-adiabatic dynamics of molecules in optical cavities
,”
J. Chem. Phys.
144
,
054309
(
2016
).
25.
K.
Bennett
,
M.
Kowalewski
, and
S.
Mukamel
, “
Novel photochemistry of molecular polaritons in optical cavities
,”
Faraday Discuss.
194
,
259
282
(
2016
).
26.
J.
Fregoni
,
G.
Granucci
,
E.
Coccia
,
M.
Persico
, and
S.
Corni
, “
Manipulating azobenzene photoisomerization through strong light–molecule coupling
,”
Nat. Commun.
9
,
4688
(
2018
).
27.
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
J.
Campos-González-Angulo
, and
J.
Yuen-Zhou
, “
Can ultrastrong coupling change ground-state chemical reactions?
,”
ACS Photonics
5
,
167
176
(
2018
).
28.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity casimir-polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
29.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
30.
M.
Ruggenthaler
,
N.
Tancogne-Dejean
,
J.
Flick
,
H.
Appel
, and
A.
Rubio
, “
From a quantum-electrodynamical light–matter description to novel spectroscopies
,”
Nat. Rev. Chem.
2
,
0118
(
2018
).
31.
W.
Kohn
, “
Nobel Lecture: Electronic structure of matter–wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
32.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
OUP Oxford
,
2011
).
33.
A. D.
McLachlan
and
M. A.
Ball
, “
Time-dependent Hartree–Fock theory for molecules
,”
Rev. Mod. Phys.
36
,
844
855
(
1964
).
34.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
35.
I. V.
Tokatly
, “
Time-dependent density functional theory for many-electron systems interacting with cavity photons
,”
Phys. Rev. Lett.
110
,
233001
(
2013
).
36.
M.
Ruggenthaler
,
J.
Flick
,
C.
Pellegrini
,
H.
Appel
,
I. V.
Tokatly
, and
A.
Rubio
, “
Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory
,”
Phys. Rev. A
90
,
012508
(
2014
).
37.
C.
Pellegrini
,
J.
Flick
,
I. V.
Tokatly
,
H.
Appel
, and
A.
Rubio
, “
Optimized effective potential for quantum electrodynamical time-dependent density functional theory
,”
Phys. Rev. Lett.
115
,
093001
(
2015
).
38.
J.
Flick
,
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Ab initio optimized effective potentials for real molecules in optical cavities: Photon contributions to the molecular ground state
,”
ACS Photonics
5
,
992
1005
(
2018
).
39.
J.
Flick
and
P.
Narang
, “
Cavity-correlated electron-nuclear dynamics from first principles
,”
Phys. Rev. Lett.
121
,
113002
(
2018
).
40.
N. M.
Hoffmann
,
H.
Appel
,
A.
Rubio
, and
N. T.
Maitra
, “
Light-matter interactions via the exact factorization approach
,”
Eur. Phys. J. B
91
,
180
(
2018
).
41.
A.
Abedi
,
E.
Khosravi
, and
I. V.
Tokatly
, “
Shedding light on correlated electron–photon states using the exact factorization
,”
Eur. Phys. J. B
91
,
194
(
2018
).
42.
G.
Albareda
,
A.
Kelly
, and
A.
Rubio
, “
Nonadiabatic quantum dynamics without potential energy surfaces
,”
Phys. Rev. Mater.
3
,
023803
(
2019
).
43.
N.
Rivera
,
J.
Flick
, and
P.
Narang
, “
Variational theory of nonrelativistic quantum electrodynamics
,”
Phys. Rev. Lett.
122
,
193603
(
2019
).
44.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity-induced modifications of molecular structure in the strong-coupling regime
,”
Phys. Rev. X
5
,
041022
(
2015
).
45.
J.
Flick
,
H.
Appel
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Cavity Born–Oppenheimer approximation for correlated electron-nuclear-photon systems
,”
J. Chem. Theory Comput.
13
,
1616
1625
(
2017
).
46.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling
,”
Phys. Rev. A
98
,
043801
(
2018
).
47.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
48.
M.
Casida
, “
Time-dependent density functional response theory of molecular systems: Theory, computational methods, and functionals
,” in
Recent Developments and Applications of Modern Density Functional Theory
(
World Scientific
,
1996
).
49.
J.
Flick
,
D. M.
Welakuh
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Light–matter response in nonrelativistic quantum electrodynamics
,”
ACS Photonics
6
,
2757
2778
(
2019
).
50.
M. R. J.
Hachey
,
P. J.
Bruna
, and
F.
Grein
, “
Spectroscopy of formaldehyde. 1. Ab initio studies on singlet valence and Rydberg states of planar H2CO, with emphasis on 1(π, π*) and 1(σ, π*)
,”
J. Phys. Chem.
99
,
8050
8057
(
1995
).
51.
M. R. J.
Hachey
and
F.
Grein
, “
The important role of 1(π, π*) in the UV absorption spectrum of formaldehyde, as shown by ab initio MR CI studies
,”
Chem. Phys. Lett.
256
,
179
184
(
1996
).
52.
M. E.
Casida
,
K. C.
Casida
, and
D. R.
Salahub
, “
Excited-state potential energy curves from time-dependent density-functional theory: A cross section of formaldehyde’s 1A1 manifold
,”
Int. J. Quantum Chem.
70
,
933
941
(
1998
).
53.
S.
Gómez-Carrasco
,
T.
Müller
, and
H.
Köppel
, “
Ab initio study of the VUV-induced multistate photodynamics of formaldehyde
,”
J. Phys. Chem. A
114
,
11436
11449
(
2010
).
54.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
3034
(
2017
).
55.
J.
Feist
,
J.
Galego
, and
F. J.
Garcia-Vidal
, “
Polaritonic chemistry with organic molecules
,”
ACS Photonics
5
,
205
216
(
2018
).
56.
L.
Lacombe
,
N. M.
Hoffmann
, and
N. T.
Maitra
, “
Exact potential energy surface for molecules in cavities
,”
Phys. Rev. Lett.
123
,
083201
(
2019
).
57.
M.
Born
and
R.
Oppenheimer
, “
Zur quantentheorie der molekeln
,”
Ann. Phys.
389
,
457
484
(
1927
).
58.
J. C.
Tully
, “
Perspective on “Zur quantentheorie der molekeln”
,”
Theor. Chem. Acc.
103
,
173
176
(
2000
).
59.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time: Application to conjugated molecules
,”
Int. J. Quantum Chem.
75
,
55
66
(
1999
).
60.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
323
(
2012
).
61.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
63.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
64.
C.
Jamorski
,
M. E.
Casida
, and
D. R.
Salahub
, “
Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study
,”
J. Chem. Phys.
104
,
5134
5147
(
1996
).
65.
M. E.
Casida
and
D. R.
Salahub
, “
Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra
,”
J. Chem. Phys.
113
,
8918
8935
(
2000
).
66.
Z.-h.
Yang
and
C. A.
Ullrich
, “
Direct calculation of exciton binding energies with time-dependent density-functional theory
,”
Phys. Rev. B
87
,
195204
(
2013
).
67.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2006
).
68.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
15285
15290
(
2015
).
69.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
70.
R.
van Leeuwen
and
E. J.
Baerends
, “
Exchange-correlation potential with correct asymptotic behavior
,”
Phys. Rev. A
49
,
2421
2431
(
1994
).
71.
X.
Andrade
and
A.
Aspuru-Guzik
, “
Prediction of the derivative discontinuity in density functional theory from an electrostatic description of the exchange and correlation potential
,”
Phys. Rev. Lett.
107
,
183002
(
2011
).
72.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
73.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
, “
Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold
,”
J. Chem. Phys.
108
,
4439
4449
(
1998
).
74.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
, “
Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials
,”
J. Chem. Phys.
112
,
1344
1352
(
2000
).
75.
F.
Hofmann
,
I.
Schelter
, and
S.
Kümmel
, “
Linear response time-dependent density functional theory without unoccupied states: The Kohn–Sham–Sternheimer scheme revisited
,”
J. Chem. Phys.
149
,
024105
(
2018
).
76.
A.
Castro
,
H.
Appel
,
M.
Oliveira
,
C. A.
Rozzi
,
X.
Andrade
,
F.
Lorenzen
,
M. A. L.
Marques
,
E. K. U.
Gross
, and
A.
Rubio
, “
octopus: A tool for the application of time-dependent density functional theory
,”
Phys. Status Solidi B
243
,
2465
2488
(
2006
).
77.
X.
Andrade
 et al., “
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems
,”
Phys. Chem. Chem. Phys.
17
,
31371
31396
(
2015
).
78.
N.
Tancogne-Dejean
 et al., “
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
,”
J. Chem. Phys.
152
,
124119
(
2020
).
79.
M. J.
Oliveira
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
80.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
81.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2003
).
82.
K.
Blum
Density Matrix Theory and Applications
;
Springer Science & Business Media
,
2013
83.
D. S.
Wang
,
T.
Neuman
,
J.
Flick
, and
P.
Narang
, “
Weak-to-strong light-matter coupling and dissipative dynamics from first principles
,” arXiv:2002.10461 [quant-ph] (
2020
).
84.
J.
Casanova
,
G.
Romero
,
I.
Lizuain
,
J. J.
García-Ripoll
, and
E.
Solano
, “
Deep strong coupling regime of the Jaynes-Cummings model
,”
Phys. Rev. Lett.
105
,
263603
(
2010
).
85.
H. L.
Luk
,
J.
Feist
,
J. J.
Toppari
, and
G.
Groenhof
, “
Multiscale molecular dynamics simulations of polaritonic chemistry
,”
J. Chem. Theory Comput.
13
,
4324
4335
(
2017
).
86.
U.
Mordovina
,
C.
Bungey
,
H.
Appel
,
P. J.
Knowles
,
A.
Rubio
, and
F. R.
Manby
, “
Polaritonic coupled-cluster theory
,”
Phys. Rev. Res.
2
,
023262
(
2020
).
87.
T. S.
Haugland
,
E.
Ronca
,
E. F.
Kjønstad
,
A.
Rubio
, and
H.
Koch
, “
Coupled cluster theory for molecular polaritons: Changing ground and excited states
,” arXiv:2005.04477 [physics.chem-ph] (
2020
).
88.
V.
Rokaj
,
D.
Welakuh
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Light–matter interaction in the long-wavelength limit: No ground-state without dipole self-energy
,”
J. Phys. B: At., Mol. Opt. Phys.
51
,
034005
(
2017
).
89.
D.
De Bernardis
,
P.
Pilar
,
T.
Jaako
,
S.
De Liberato
, and
P.
Rabl
, “
Breakdown of gauge invariance in ultrastrong-coupling cavity QED
,”
Phys. Rev. A
98
,
053819
(
2018
).
90.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
, “
Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
,”
ACS Photonics
7
,
975
990
(
2020
).
91.
M. A. D.
Taylor
,
A.
Mandal
,
W.
Zhou
, and
P.
Huo
, “
Resolution of gauge ambiguities in molecular cavity quantum electrodynamics
,” arXiv:2006.03191 [quant-ph] (
2020
).
You do not currently have access to this content.