Entropy has become increasingly central to characterize, understand, and even guide assembly, self-organization, and phase transition processes. In this work, we build on the analogous role of partition functions (or free energies) in isothermal ensembles and that of entropy in adiabatic ensembles. In particular, we show that the grand-isobaric adiabatic (μ, P, R) ensemble, or Ray ensemble, provides a direct route to determine the entropy. This allows us to follow the variations of entropy with the thermodynamic conditions and thus explore phase transitions. We test this approach by carrying out Monte Carlo simulations on argon and copper in bulk phases and at phase boundaries. We assess the reliability and accuracy of the method through comparisons with the results from flat-histogram simulations in isothermal ensembles and with the experimental data. Advantages of the approach are multifold and include the direct determination of the μP relation, without any evaluation of pressure via the virial expression, the precise control of the system size (number of atoms) via the input value of R, and the straightforward computation of enthalpy differences for isentropic processes, which are key quantities to determine the efficiency of thermodynamic cycles. A new insight brought by these simulations is the highly symmetric pattern exhibited by both systems along the transition, as shown by scaled temperature–entropy and pressure–entropy plots.

1.
R.
Fowler
and
E.
Guggenheim
,
Statistical Thermodynamics
(
Cambridge University Press
,
London
,
1939
).
2.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Dover Books
,
New York
,
1986
).
3.
H. W.
Graben
and
J. R.
Ray
,
Mol. Phys.
80
,
1183
(
1993
).
4.
F. A.
Escobedo
,
Phys. Rev. E
73
,
056701
(
2006
).
5.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
6.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
8.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
9.
T.
Çağin
and
B. M.
Pettitt
,
Mol. Phys.
72
,
169
(
1991
).
10.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
11.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
12.
S. D.
Bond
,
B. J.
Leimkuhler
, and
B. B.
Laird
,
J. Comput. Phys.
151
,
114
(
1999
).
13.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
14.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A: Math. Gen.
39
,
5629
(
2006
).
15.
16.
W. L.
Jorgensen
,
Chem. Phys. Lett.
92
,
405
(
1982
).
18.
J. R.
Ray
and
C.
Freléchoz
,
Phys. Rev. E
53
,
3402
(
1996
).
20.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
110
,
1581
(
1999
).
22.
23.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
24.
E. A.
Guggenheim
,
J. Chem. Phys.
7
,
103
(
1939
).
26.
J. M.
Haile
and
H. W.
Graben
,
Mol. Phys.
40
,
1433
(
1980
).
27.
J. R.
Ray
,
H. W.
Graben
, and
J. M.
Haile
,
J. Chem. Phys.
75
,
4077
(
1981
).
28.
T.
Kristóf
and
J.
Liszi
,
Chem. Phys. Lett.
261
,
620
(
1996
).
29.
H. W.
Graben
and
J. R.
Ray
,
Phys. Rev. A
43
,
4100
(
1991
).
30.
J. R.
Ray
and
H. W.
Graben
,
J. Chem. Phys.
93
,
4296
(
1990
).
31.
J. R.
Ray
and
R. J.
Wolf
,
J. Chem. Phys.
98
,
2263
(
1993
).
32.
J. R.
Ray
and
R. J.
Wolf
, in
Computer Simulation Studies in Condensed-Matter Physics VI
, Springer Proceedings in Physics Vol. 76, edited by
D.
Landau
,
K.
Mon
, and
H.
Schuettler
(
Springer
,
Berlin, Heidelberg
,
1993
).
33.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
34.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184107
(
2012
).
35.
N. B.
Vargaftik
,
Y. K.
Vinoradov
, and
V. S.
Yargin
,
Handbook of Physical Properties of Liquids and Gases
(
Begell House
,
New York
,
1996
).
36.
M. W.
Finnis
and
J. E.
Sinclair
,
Philos. Mag. A
50
,
45
(
1984
).
37.
A. P.
Sutton
and
J.
Chen
,
Philos. Mag. Lett.
61
,
139
(
1990
).
38.
J.
Mei
,
J. W.
Davenport
, and
G. W.
Fernando
,
Phys. Rev. B
43
,
4653
(
1991
).
39.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. Lett.
50
,
1285
(
1983
).
40.
S.-N.
Luo
,
T. J.
Ahrens
,
T.
Çağ
n
ı,
A.
Strachan
,
W. A.
Goddard
 III
, and
D. C.
Swift
,
Phys. Rev. B
68
,
134206
(
2003
).
41.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. B
78
,
184202
(
2008
).
42.
H. H.
Kart
,
M.
Tomak
,
M.
Uludoğan
, and
T.
Çağ
n
ı,
Comput. Mater. Sci.
32
,
107
(
2005
).
43.
P.
Xu
,
T.
Cagin
, and
W. A.
Goddard
 III
,
J. Chem. Phys.
123
,
104506
(
2005
).
44.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
136
,
8145
(
2014
).
45.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. Lett.
120
,
115701
(
2018
).
46.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. Lett.
123
,
195701
(
2019
).
47.
L. D.
Gelb
and
S. N.
Chakraborty
,
J. Chem. Phys.
135
,
224113
(
2011
).
48.
T.
Aleksandrov
,
C.
Desgranges
, and
J.
Delhommelle
,
Mol. Simul.
38
,
1265
(
2012
).
49.
C.
Desgranges
,
L.
Widhalm
, and
J.
Delhommelle
,
J. Phys. Chem. B
120
,
5255
(
2016
).
51.
D.
Bhatt
,
A. W.
Jasper
,
N. E.
Schultz
,
J. I.
Siepmann
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
128
,
4224
(
2006
).
52.
E. M.
Apfelbaum
and
V. S.
Vorob’ev
,
Chem. Phys. Lett.
467
,
318
(
2009
).
53.
E. M.
Apfelbaum
and
V. S.
Vorob’ev
,
J. Phys. Chem. B
119
,
8419
(
2015
).
54.
T.
Aleksandrov
,
C.
Desgranges
, and
J.
Delhommelle
,
Fluid Phase Equilib.
287
,
79
(
2010
).
55.
A. K.
Metya
,
A.
Hens
, and
J. K.
Singh
,
Fluid Phase Equilib.
313
,
16
(
2012
).
56.
H.
Hess
,
Z. Metallkd.
89
,
388
(
1998
).
57.
M.
Martynyuk
and
O.
Pantelejchuk
,
High Temp. High Pressure
14
,
1201
(
1976
).
58.
J.
Weiner
,
K. H.
Langley
, and
N. C.
Ford
,
Phys. Rev. Lett.
32
,
879
(
1974
).
59.
F. W.
Starr
,
C. A.
Angell
, and
H. E.
Stanley
,
Physica A
323
,
51
(
2003
).
60.
L.
Zha
,
M.
Zhang
,
L.
Li
, and
W.
Hu
,
J. Phys. Chem. B
120
,
12988
(
2016
).
61.
D.
Frenkel
,
Nat. Mater.
14
,
9
(
2014
).
62.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
145
,
204112
(
2016
).
63.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
146
,
184104
(
2017
).
64.
P. M.
Piaggi
,
O.
Valsson
, and
M.
Parrinello
,
Phys. Rev. Lett.
119
,
015701
(
2017
).
65.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. E
98
,
063307
(
2018
).
66.
S.-T.
Tsai
and
P.
Tiwary
,
Mol. Simul.
(published online 2020).
67.
B.
Tidor
and
M.
Karplus
,
J. Mol. Biol.
238
,
405
(
1994
).
68.
69.
G.
Menzl
and
C.
Dellago
,
J. Chem. Phys.
145
,
211918
(
2016
).
70.
S.
Lee
,
M.
Engel
, and
S.
Glotzer
,
Bull. Am. Phys. Soc.
K57
,
00005
(
2018
), available at https://ui.adsabs.harvard.edu/abs/2018APS..MARK57005L/abstract.
71.
G.
Gobbo
,
M. A.
Bellucci
,
G. A.
Tribello
,
G.
Ciccotti
, and
B. L.
Trout
,
J. Chem. Theory Comput.
14
,
959
(
2018
).
72.
S.
Martiniani
,
P. M.
Chaikin
, and
D.
Levine
,
Phys. Rev. X
9
,
011031
(
2019
).
73.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
 et al.,
Comput. Sci. Eng.
16
,
62
(
2014
).
You do not currently have access to this content.