The use of many control variates is proposed as a method to accelerate the second- and third-order Monte Carlo (MC) many-body perturbation (MC-MP2 and MC-MP3) calculations. A control variate is an exactly integrable function that is strongly correlated or anti-correlated with the target function to be integrated by the MC method. Evaluating both integrals and their covariances in the same MC run, one can effect a mutual cancellation of the statistical uncertainties and biases in the MC integrations, thereby accelerating its convergence considerably. Six and thirty-six control variates, whose integrals are known a priori, are generated for MC-MP2 and MC-MP3, respectively, by systematically replacing one or more two-electron-integral vertices of certain configurations by zero-valued overlap-integral vertices in their Goldstone diagrams. The variances and covariances of these control variates are computed at a marginal cost, enhancing the overall efficiency of the MC-MP2 and MC-MP3 calculations by a factor of up to 14 and 20, respectively.

1.
G. H.
Booth
,
A. J.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
2.
S. Y.
Willow
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Phys.
137
,
204122
(
2012
).
3.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
4.
D.
Neuhauser
,
E.
Rabani
, and
R.
Baer
,
J. Chem. Theory Comput.
9
,
24
(
2013
).
5.
S. Y.
Willow
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Phys.
138
,
164111
(
2013
).
6.
S. Y.
Willow
,
M. R.
Hermes
,
K. S.
Kim
, and
S.
Hirata
,
J. Chem. Theory Comput.
9
,
4396
(
2013
).
7.
S.
Ten-no
,
J. Chem. Phys.
138
,
164126
(
2013
).
8.
S. Y.
Willow
and
S.
Hirata
,
J. Chem. Phys.
140
,
024111
(
2014
).
9.
S. Y.
Willow
,
K. S.
Kim
, and
S.
Hirata
,
Phys. Rev. B
90
,
201110
(
2014
).
10.
S. Y.
Willow
,
J.
Zhang
,
E. F.
Valeev
, and
S.
Hirata
,
J. Chem. Phys.
140
,
031101
(
2014
).
11.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
,
Mol. Phys.
112
,
1855
(
2014
).
12.
Y.
Cytter
,
D.
Neuhauser
, and
R.
Baer
,
J. Chem. Theory Comput.
10
,
4317
(
2014
).
13.
A. E.
Doran
and
S.
Hirata
,
J. Chem. Theory Comput.
12
,
4821
(
2016
).
14.
C. M.
Johnson
,
A. E.
Doran
,
J.
Zhang
,
E. F.
Valeev
, and
S.
Hirata
,
J. Chem. Phys.
145
,
154115
(
2016
).
15.
D.
Neuhauser
,
R.
Baer
, and
D.
Zgid
,
J. Chem. Theory Comput.
13
,
5396
(
2017
).
16.
T. Y.
Takeshita
,
W. A.
de Jong
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
,
J. Chem. Theory Comput.
13
,
4605
(
2017
).
17.
G.
Jeanmairet
,
S.
Sharma
, and
A.
Alavi
,
J. Chem. Phys.
146
,
044107
(
2017
).
18.
Y.
Garniron
,
A.
Scemama
,
P.-F.
Loos
, and
M.
Caffarel
,
J. Chem. Phys.
147
,
034101
(
2017
).
19.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
,
Phys. Rev. Lett.
119
,
223003
(
2017
).
20.
C. M.
Johnson
,
A. E.
Doran
,
S. L.
Ten-no
, and
S.
Hirata
,
J. Chem. Phys.
149
,
174112
(
2018
).
21.
J. S.
Spencer
,
V. A.
Neufeld
,
W. A.
Vigor
,
R. S. T.
Franklin
, and
A. J. W.
Thom
,
J. Chem. Phys.
149
,
204103
(
2018
).
22.
A. E.
Doran
and
S.
Hirata
,
J. Chem. Theory Comput.
15
,
6097
(
2019
).
23.
M.-A.
Filip
,
C. J. C.
Scott
, and
A. J. W.
Thom
,
J. Chem. Theory Comput.
15
,
6625
(
2019
).
24.
W.
Dou
,
T. Y.
Takeshita
,
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
J. Chem. Theory Comput.
15
,
6703
(
2019
).
25.
M.
Caffarel
,
J. Chem. Phys.
151
,
064101
(
2019
).
26.
Z.
Li
,
J. Chem. Phys.
151
,
244114
(
2019
).
27.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
28.
B. L.
Hammond
,
W. A.
Lester
, and
P. J.
Reynolds
,
Monte Carlo Methods in Ab Initio Quantum Chemistry
(
World Scientific
,
1994
).
29.
A.
Lüchow
and
J. B.
Anderson
,
Annu. Rev. Phys. Chem.
51
,
501
(
2000
).
30.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
31.
J.
Kolorenč
and
L.
Mitas
,
Rep. Prog. Phys.
74
,
026502
(
2011
).
32.
B. M.
Austin
,
D. Y.
Zubarev
, and
W. A.
Lester
,
Chem. Rev.
112
,
263
(
2012
).
33.
L. K.
Wagner
,
Int. J. Quantum Chem.
114
,
94
(
2014
).
34.
A. A.
Kunitsa
and
S.
Hirata
,
Phys. Rev. E
101
,
013311
(
2020
).
35.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
153
,
503
(
1988
).
36.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
,
Chem. Phys. Lett.
166
,
281
(
1990
).
37.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
38.
R. J.
Bartlett
,
H.
Sekino
, and
G. D.
Purvis
,
Chem. Phys. Lett.
98
,
66
(
1983
).
39.
S. J.
Cole
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
873
(
1987
).
40.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
41.
I.
Shavitt
and
R.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
42.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-no
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
43.
T.
Shiozaki
,
E. F.
Valeev
, and
S.
Hirata
,
Annu. Rep. Comput. Chem.
5
,
131
(
2009
).
44.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
45.
S.
Ten-no
and
J.
Noga
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
114
(
2012
).
46.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
47.
A.
Grüneis
,
S.
Hirata
,
Y.-y.
Ohnishi
, and
S.
Ten-no
,
J. Chem. Phys.
146
,
080901
(
2017
).
48.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
49.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
50.
S. A.
Maurer
,
D. S.
Lambrecht
,
D.
Flaig
, and
C.
Ochsenfeld
,
J. Chem. Phys.
136
,
144107
(
2012
).
51.
L. F.
Greengard
,
The Rapid Evaluation of Potential Fields in Particle Systems
(
MIT Press
,
1988
).
52.
C. A.
White
,
B. G.
Johnson
,
P. M.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
53.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
54.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
55.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
89
,
1540
(
1988
).
56.
A. V.
Titov
,
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
9
,
213
(
2013
).
57.
E. F.
Valeev
, Libint: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions, version 2.7.0-beta.6,
2020
, http://libint.valeyev.net/.
58.
J.
Zhang
,
J. Chem. Theory Comput.
14
,
572
(
2018
).
59.
I. M. B.
Nielsen
and
E. T.
Seidl
,
J. Comput. Chem.
16
,
1301
(
1995
).
60.
M.
Katouda
and
T.
Nakajima
,
J. Chem. Theory Comput.
9
,
5373
(
2013
).
61.
D. G.
Tomlinson
,
A.
Asadchev
, and
M. S.
Gordon
,
J. Comput. Chem.
37
,
1274
(
2016
).
62.
S.
Saebo
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
63.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
64.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
65.
E. G.
Hohenstein
,
R. M.
Parrish
, and
T. J.
Martínez
,
J. Chem. Phys.
137
,
044103
(
2012
).
66.
M.
Kalos
and
P.
Whitlock
,
Monte Carlo Methods
(
Wiley
,
2008
).
67.
A. B.
Owen
, “
Monte Carlo theory, methods and examples
,” (unpublished).
68.
D.
Kroese
,
T.
Taimre
, and
Z.
Botev
,
Handbook of Monte Carlo Methods
(
Wiley
,
2013
).
69.
A. E.
Doran
and
S.
Hirata
, “
Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling
,”
J. Chem. Phys.
(to be published).
70.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
71.
W. K.
Hastings
,
Biometrika
57
,
97
(
1970
).
72.
M. G.
Bayne
and
A.
Chakraborty
, arXiv:1804.01197 (
2018
).
73.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover
,
1989
).
74.
R. D.
Mattuck
,
A Guide to Feynman Diagrams in the Many-Body Problem
(
Dover
,
2012
).
75.
A.
Fetter
and
J.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Dover
,
2012
).
76.
N.
March
,
W.
Young
, and
S.
Sampanthar
,
The Many-Body Problem in Quantum Mechanics
(
Dover
,
1995
).
77.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).456153
78.
A. E.
Doran
and
S.
Hirata
, “
Stochastic evaluation of fourth-order many-body perturbation energies
” (unpublished) (
2020
).
You do not currently have access to this content.