Hybrid particle–field molecular dynamics combines standard molecular potentials with density-field models into a computationally efficient methodology that is well-adapted for the study of mesoscale soft matter systems. Here, we introduce a new formulation based on filtered densities and a particle–mesh formalism that allows for Hamiltonian dynamics and alias-free force computation. This is achieved by introducing a length scale for the particle–field interactions independent of the numerical grid used to represent the density fields, enabling systematic convergence of the forces upon grid refinement. Our scheme generalizes the original particle–field molecular dynamics implementations presented in the literature, finding them as limit conditions. The accuracy of this new formulation is benchmarked by considering simple monoatomic systems described by the standard hybrid particle–field potentials. We find that by controlling the time step and grid size, conservation of energy and momenta, as well as disappearance of alias, is obtained. Increasing the particle–field interaction length scale permits the use of larger time steps and coarser grids. This promotes the use of multiple time step strategies over the quasi-instantaneous approximation, which is found to not conserve energy and momenta equally well. Finally, our investigations of the structural and dynamic properties of simple monoatomic systems show a consistent behavior between the present formulation and Gaussian core models.

1.
K. C.
Daoulas
and
M.
Müller
,
J. Chem. Phys.
125
,
184904
(
2006
).
2.
M.
Müller
,
J. Stat. Phys.
145
,
967
(
2011
).
3.
G.
Milano
and
T.
Kawakatsu
,
J. Chem. Phys.
130
,
214106
(
2009
).
4.
G. G.
Vogiatzis
,
G.
Megariotis
, and
D. N.
Theodorou
,
Macromolecules
50
,
3004
(
2017
).
5.
Y.
Zhao
,
A.
De Nicola
,
T.
Kawakatsu
, and
G.
Milano
,
J. Comput. Chem.
33
,
868
(
2012
).
6.
Y.-L.
Zhu
,
H.
Liu
,
Z.-W.
Li
,
H.-J.
Qian
,
G.
Milano
, and
Z.-Y.
Lu
,
J. Comput. Chem.
34
,
2197
2211
(
2013
).
7.
L.
Schneider
and
M.
Müller
,
Comput. Phys. Commun.
235
,
463
(
2019
).
8.
G.
Milano
,
T.
Kawakatsu
, and
A.
De Nicola
,
Phys. Biol.
10
,
045007
(
2013
).
9.
T. A.
Soares
,
S.
Vanni
,
G.
Milano
, and
M.
Cascella
,
J. Phys. Chem. Lett.
8
,
3586
(
2017
).
10.
M.
Cascella
and
S.
Vanni
,
Chemical Modelling: Applications and Theory
(
Royal Society of Chemistry
,
2015
), Vol. 12, pp.
1
52
.
11.
S. J.
Marrink
,
V.
Corradi
,
P. C. T.
Souza
,
H. I.
Ingólfsson
,
D. P.
Tieleman
, and
M. S. P.
Sansom
,
Chem. Rev.
119
,
6184
(
2019
).
12.
A.
De Nicola
,
T.
Kawakatsu
,
F.
Müller-Plathe
, and
G.
Milano
,
Eur. Phys. J. Spec. Top.
225
,
1817
(
2016
).
13.
Y.
Zhao
,
M.
Byshkin
,
Y.
Cong
,
T.
Kawakatsu
,
L.
Guadagno
,
A.
De Nicola
,
N.
Yu
,
G.
Milano
, and
B.
Dong
,
Nanoscale
8
,
15538
(
2016
).
14.
G.
Munaò
,
A.
Pizzirusso
,
A.
Kalogirou
,
A.
De Nicola
,
T.
Kawakatsu
,
F.
Müller-Plathe
, and
G.
Milano
,
Nanoscale
10
,
21656
(
2018
).
15.
G.
Munaò
,
A.
De Nicola
,
F.
Müller-Plathe
,
T.
Kawakatsu
,
A.
Kalogirou
, and
G.
Milano
,
Macromolecules
52
,
8826
(
2019
).
16.
A.
De Nicola
,
Y.
Zhao
,
T.
Kawakatsu
,
D.
Roccatano
, and
G.
Milano
,
Theor. Chem. Acc.
131
,
1167
(
2012
).
17.
M.
Ledum
,
S.
Løland Bore
, and
M.
Cascella
,
Mol. Phys.
(
2020
).
18.
A.
De Nicola
,
Y.
Zhao
,
T.
Kawakatsu
,
D.
Roccatano
, and
G.
Milano
,
J. Chem. Theory Comput.
7
,
2947
(
2011
).
19.
S. L.
Bore
,
G.
Milano
, and
M.
Cascella
,
J. Chem. Theory Comput.
14
,
1120
(
2018
).
20.
Y.-L.
Zhu
,
Z.-Y.
Lu
,
G.
Milano
,
A.-C.
Shi
, and
Z.-Y.
Sun
,
Phys. Chem. Chem. Phys.
18
,
9799
(
2016
).
21.
H. B.
Kolli
,
A.
De Nicola
,
S. L.
Bore
,
K.
Schäfer
,
G.
Diezemann
,
J.
Gauss
,
T.
Kawakatsu
,
Z.-Y.
Lu
,
Y.-L.
Zhu
,
G.
Milano
, and
M.
Cascella
,
J. Chem. Theory Comput.
14
,
4928
(
2018
).
22.
S. L.
Bore
,
H. B.
Kolli
,
T.
Kawakatsu
,
G.
Milano
, and
M.
Cascella
,
J. Chem. Theory Comput.
15
,
2033
(
2019
).
23.
A. D.
Nicola
,
T. A.
Soares
,
D. E.
Santos
,
S. L.
Bore
,
G. A.
Sevink
,
M.
Cascella
, and
G.
Milano
,
Biochim. Biophys. Acta
129570
(
2020
).
24.
K.
Schäfer
,
H. B.
Kolli
,
M.
Christensen
,
S. L.
Bore
,
G.
Diezemann
,
J.
Gauss
,
G.
Milano
,
R.
Lund
, and
M.
Cascella
,
Angew. Chem.
59
,
2
10
(
2020
).
25.
M.
Carrer
,
T.
Skrbic
,
S. L.
Bore
,
G.
Milano
,
M.
Cascella
, and
A.
Giacometti
,
J. Phys. Chem. B
124
,
6448
(
2020
).
26.
S. L.
Bore
,
H. B.
Kolli
,
A.
De Nicola
,
M.
Byshkin
,
T.
Kawakatsu
,
G.
Milano
, and
M.
Cascella
,
J. Chem. Phys.
152
,
184908
(
2020
).
27.
G. J. A.
Sevink
,
F.
Schmid
,
T.
Kawakatsu
, and
G.
Milano
,
Soft Matter
13
,
1594
(
2017
).
28.
A. P.
Sgouros
,
A. T.
Lakkas
,
G.
Megariotis
, and
D. N.
Theodorou
,
Macromolecules
51
,
9798
(
2018
).
29.
A.
Pizzirusso
,
A.
De Nicola
,
G. J. A.
Sevink
,
A.
Correa
,
M.
Cascella
,
T.
Kawakatsu
,
M.
Rocco
,
Y.
Zhao
,
M.
Celino
, and
G.
Milano
,
Phys. Chem. Chem. Phys.
19
,
29780
(
2017
).
30.
M.
Laradji
,
H.
Guo
, and
M. J.
Zuckermann
,
Phys. Rev. E
49
,
3199
(
1994
).
31.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
32.
Y.
Feng
,
M.-Y.
Chu
,
U.
Seljak
, and
P.
McDonald
,
Mon. Not. R. Astron. Soc.
463
,
2273
(
2016
).
33.
D. C.
Rapaport
and
D. C. R.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
2004
).
34.
M.
Deserno
and
C.
Holm
,
J. Chem. Phys.
109
,
7678
(
1998
).
35.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods
(
Springer
,
2006
).
36.
E.
Parzen
,
Ann. Math. Stat.
33
,
1065
(
1962
).
37.
F. H.
Stillinger
and
D. K.
Stillinger
,
Physica A
244
,
358
(
1997
).
38.
D. Q.
Pike
,
F. A.
Detcheverry
,
M.
Müller
, and
J. J.
de Pablo
,
J. Chem. Phys.
131
,
084903
(
2009
).
39.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
40.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
41.
Y.
Feng
,
N.
Hand
, and
B.
Dai
, rainwoodman/pmesh 0.1.33,
2017
.
42.
W. E.
Lorensen
and
H. E.
Cline
,
ACM SIGGRAPH Comput. Graphics
21
,
163
(
1987
).
43.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
44.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
68
,
3837
(
1978
).
45.
P.
Mausbach
and
H.-O.
May
,
Fluid Phase Equilib.
249
,
17
(
2006
).
You do not currently have access to this content.