The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl–carboxyl (—OH/—COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/24I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.

1.
D.
Kumar
,
S. K.
Sharma
,
S.
Verma
,
V.
Sharma
, and
V.
Kumar
, “
A short review on rare earth doped NaYF4 upconverted nanomaterials for solar cell applications
,”
Mater. Today: Proc.
21
,
1868
1874
(
2020
).
2.
J.
Yu
,
W.
Yin
,
T.
Peng
,
Y.-n.
Chang
,
Y.
Zu
,
J.
Li
,
X.
He
,
X.
Ma
,
Z.
Gu
, and
Y.
Zhao
, “
Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF4:Yb, Er upconversion nanoparticles in mice via different administration routes
,”
Nanoscale
9
,
4497
(
2017
).
3.
X.
Li
,
D.
Zhao
, and
F.
Zhang
, “
Multifunctional upconversion-magnetic hybrid nanostructured materials: Synthesis and bioapplications
,”
Theranostics
3
(
5
),
292
305
(
2013
).
4.
Y.
Han
,
H.
Li
,
Y.
Wang
,
Y.
Pan
,
L.
Huang
,
F.
Song
, and
W.
Huang
, “
Upconversion modulation through pulsed laser excitation for anti-counterfeiting
,”
Sci. Rep.
7
,
1320
(
2017
).
5.
X.
Zhu
,
Q.
Su
,
W.
Feng
, and
F.
Li
, “
Anti-stokes shift luminescent materials for bio-applications
,”
Chem. Soc. Rev.
46
,
1025
1039
(
2017
).
6.
L.
Zhao
,
A.
Kutikov
,
J.
Shen
,
C.
Duan
,
J.
Song
, and
G.
Han
, “
Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles
,”
Theranostics
3
(
4
),
249
257
(
2013
).
7.
S.
Wang
,
A.
Bi
,
W.
Zeng
, and
Z.
Cheng
, “
Upconversion nanocomposites for photo-based cancer theranostics
,”
J. Mater. Chem. B
4
,
5331
5348
(
2016
).
8.
J. F.-C.
Loo
,
Y.-H.
Chien
,
F.
Yin
,
S.-K.
Kong
,
H.-P.
Ho
, and
K.-T.
Yong
, “
Upconversion and downconversion nanoparticles for biophotonics and nanomedicine
,”
Coord. Chem. Rev.
400
,
213042
(
2019
).
9.
X.
Liang
,
J.
Fan
,
Y.
Wang
,
Y.
Zhao
,
R.
Jin
,
T.
Sun
,
M.
Cheng
, and
X.
Wang
, “
Synthesis of hollow and mesoporous structured NaYF4:Yb, Er upconversion luminescent nanoparticles for targeted drug delivery
,”
J. Rare Earth
35
(
5
),
419
(
2017
).
10.
L.
Marciniak
,
M.
Stefanski
,
R.
Tomala
,
D.
Hreniak
, and
W.
Strek
, “
Synthesis and up-conversion luminescence of Er3+ and Yb3+ codoped nanocrystalline tetra- (KLaP4O12) and pentaphosphates (LaP5O14)
,”
J. Chem. Phys.
143
,
094701
(
2015
).
11.
H.
Dong
,
L.-D.
Sun
, and
C.-H.
Yan
, “
Energy transfer in lanthanide upconversion studies for extended optical applications
,”
Chem. Soc. Rev.
44
,
1608
1634
(
2015
).
12.
F.
Auzel
, “
Upconversion and anti-stokes processes with f and d ions in solids
,”
Chem. Rev.
104
,
139
173
(
2004
).
13.
A.
Kar
,
S.
Kundu
, and
A.
Patra
, “
Lanthanide-doped nanocrystals: Strategies for improving the efficiency of upconversion emission and their physical understanding
,”
ChemPhysChem
16
,
505
521
(
2015
).
14.
F.
Wang
and
X.
Liu
, “
Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
,”
Chem. Soc. Rev.
38
(
4
),
976
989
(
2009
).
15.
T.
Laihinen
,
M.
Lastusaari
,
L.
Pihlgren
,
L. C. V.
Rodrigues
, and
J.
Hölsä
, “
Thermal behaviour of the NaYF4:Yb3+, R3+ materials
,”
J. Therm. Anal. Calorim.
121
,
37
43
(
2015
).
16.
C.
Li
and
J.
Lin
, “
Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application
,”
J. Mater. Chem.
20
,
6831
6847
(
2010
).
17.
G.
Pawlik
,
J.
Niczyj
,
A.
Noculak
,
W.
Radosz
, and
A.
Podhorodecki
, “
Multiband Monte Carlo modeling of upconversion emission in sub 10 nm β-NaGdF4:Yb3+, Er3+ nanocrystals–Effect of Yb3+ content
,”
J. Chem. Phys.
146
,
244111
(
2017
).
18.
H.-X.
Mai
,
Y.-W.
Zhang
,
R.
Si
,
Z.-G.
Yan
,
L.-D.
Sun
,
L.-P.
You
, and
C.-H.
Yan
, “
High-quality sodium rare-earth fluoride Nanocrystals: Controlled synthesis and optical properties
,”
J. Am. Chem. Soc.
128
,
6426
6436
(
2006
).
19.
X.
Wu
,
G.
Chen
,
J.
Shen
,
Z.
Li
,
Y.
Zhang
, and
G.
Han
, “
Upconversion nanoparticles: A versatile solution to multiscale biological imaging
,”
Bioconjugate Chem.
26
,
166
175
(
2015
).
20.
G. K.
Das
,
D. T.
Stark
, and
I. M.
Kennedy
, “
Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction
,”
Langmuir
30
,
8167
8176
(
2014
).
21.
W. L.
Suchanek
and
R. E.
Riman
, “
Hydrothermal synthesis of advanced ceramic powders
,”
Adv. Sci. Tech.
45
,
184
193
(
2006
).
22.
I. Z.
Dinic
,
M. E.
Rabanal
,
K.
Yamamoto
,
Z.
Tan
,
S.
Ohara
,
L. T.
Mancic
, and
O. B.
Milosevic
, “
PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles
,”
Adv. Powder Technol.
27
,
845
853
(
2016
).
23.
H.-Q.
Wang
and
T.
Nann
, “
Monodisperse upconverting nanocrystals by microwave-assisted synthesis
,”
ACS Nano
3
(
11
),
3804
3808
(
2009
).
24.
M.
Wang
,
C.-C.
Mi
,
J.-L.
Liu
,
X.-L.
Wu
,
Y.-X.
Zhang
,
W.
Hou
,
F.
Li
, and
S.-K.
Xu
, “
One-step synthesis and characterization of water-soluble NaYF4:Yb, Er/Polymer nanoparticles with efficient up-conversion fluorescence
,”
J. Alloys Compd.
485
,
L24
L27
(
2009
).
25.
I. Z.
Dinic
,
L. T.
Mancic
,
M. E.
Rabanal
,
K.
Yamamoto
,
S.
Ohara
,
S.
Tamura
,
T.
Koji
,
A. M. L. M.
Costa
,
B. A.
Marinkovic
, and
O. B.
Milosevic
, “
Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis
,”
Adv. Powder Technol.
28
,
73
82
(
2017
).
26.
R.
Zhou
,
T.
Ma
,
B.
Qiu
, and
X.
Li
, “
Controlled synthesis of β-NaYF4:Yb, Er microphosphors and upconversion luminescence property
,”
Mater. Chem. Phys.
194
,
23
28
(
2017
).
27.
C.
Li
,
Z.
Quan
,
J.
Yang
,
P.
Yang
, and
J.
Lin
, “
Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties
,”
Inorg. Chem.
46
,
6329
6337
(
2007
).
28.
M.
Ding
,
S.
Yin
,
Y.
Ni
,
C.
Lu
,
D.
Chen
,
J.
Zhong
,
Z.
Ji
, and
Z.
Xu
, “
Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence
,”
Ceram. Int.
41
,
7411
7420
(
2015
).
29.
W.
Shan
,
R.
Li
,
J.
Feng
,
Y.
Chen
, and
D.
Guo
, “
Hydrothermal synthesis and up-conversion luminescence of NaYF4:Yb3+, Tm3+ phosphors
,”
Mater. Chem. Phys.
162
,
617
627
(
2015
).
30.
T.
Jiang
,
W.
Qin
,
W.
Di
,
R.
Yang
,
D.
Liu
,
X.
Zhai
, and
G.
Qin
, “
Citric acid-assisted hydrothermal synthesis of α-NaYF4:Yb3+, Tm3+ nanocrystals and their enhanced ultraviolet upconversion emissions
,”
CrystEngComm
14
,
2302
2307
(
2012
).
31.
F.
Wang
,
Y.
Han
,
C. S.
Lim
,
Y.
Lu
,
J.
Wang
,
J.
Xu
,
H.
Chen
,
C.
Zhang
,
M.
Hong
, and
X.
Liu
, “
Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping
,”
Nature
463
,
1061
1065
(
2010
).
32.
TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data,
Bruker AXS GmbH
,
Karlsruhe, Germany
,
2008
.
33.
P.
Caravan
,
J. J.
Ellison
,
T. J.
McMurry
, and
R. B.
Lauffer
, “
Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications
,”
Chem. Rev.
99
,
2293
2352
(
1999
).
34.
M.
Matzapetakis
,
C. P.
Raptopoulou
,
A.
Tsohos
,
V.
Papaefthymiou
,
N.
Moon
, and
A.
Salifoglou
, “
Synthesis, spectroscopic and structural Characterization of the first mononuclear, water soluble iron–citrate complex, (NH4)5Fe(C6H4O7)2·2H2O
,”
J. Am. Chem. Soc.
120
(
50
),
13266
13267
(
1998
).
35.
C.
Wang
and
X.
Cheng
, “
Controlled hydrothermal growth and tunable luminescence properties of β-NaYF4:Yb3+/Er3+ microcrystals
,”
J. Alloys Compd.
617
,
807
815
(
2014
).
36.
H.
Li
,
L.
Xu
, and
G.
Chen
, “
Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence
,”
Molecules
22
,
2113
(
2017
).
37.
C.
Li
,
J.
Yang
,
Z.
Quan
,
P.
Yang
,
D.
Kong
, and
J.
Lin
, “
Different microstructures of β-NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources
,”
Chem. Mater.
19
,
4933
4942
(
2007
).
38.
M.
Pedroni
,
F.
Piccinelli
,
T.
Passuello
,
S.
Polizzi
,
J.
Ueda
,
P.
Haro-González
,
L.
Martinez Maestro
,
D.
Jaque
,
J.
García-Solé
,
M.
Bettinelli
, and
A.
Speghini
, “
Water (H2O and D2O) dispersible NIR-to-NIR upconverting Yb3+/Tm3+ doped MF2 (M = Ca, Sr) colloids: Influence of the host crystal
,”
Cryst. Growth Des.
13
,
4906
4913
(
2013
).
39.
L. C.
Bichara
,
H. E.
Lanús
,
E. G.
Ferrer
,
M. B.
Gramajo
, and
S. A.
Brandán
, “
Vibrational study and force field of the citric acid dimer based on the SQM methodology
,”
Adv. Phys. Chem.
2011
,
1
10
.
40.
N. C.
Dyck
,
F. C. J. M.
van Veggel
, and
G. P.
Demopoulos
, “
Size-Dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+, Er3+ crystals via annealing
,”
ACS Appl. Mater. Interfaces
5
,
11661
11667
(
2013
).
41.
S.
Heer
,
K.
Kompe
,
H.-U.
Gudel
, and
M.
Haase
, “
Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals
,”
Adv. Mater.
16
(
23-24
),
2102
2105
(
2004
).
You do not currently have access to this content.