The H+(CO)2 and D+(CO)2 molecular ions were investigated by infrared spectroscopy in the gas phase and in para-hydrogen matrices. In the gas phase, ions were generated in a supersonic molecular beam by a pulsed electrical discharge. After extraction into a time-of-flight mass spectrometer, the ions were mass selected and probed by infrared laser photodissociation spectroscopy in the 700 cm−1–3500 cm−1 region. Spectra were measured using either argon or neon tagging, as well as tagging with an excess CO molecule. In solid para-hydrogen, ions were generated by electron bombardment of a mixture of CO and hydrogen, and absorption spectra were recorded in the 400 cm−1–4000 cm−1 region with a Fourier-transform infrared spectrometer. A comparison of the measured spectra with the predictions of anharmonic theory at the CCSD(T)/ANO1 level suggests that the predominant isomers formed by either argon tagging or para-hydrogen isolation are higher lying (+7.8 kcal mol−1), less symmetric isomers, and not the global minimum proton-bound dimer. Changing the formation environment or tagging strategy produces other non-centrosymmetric structures, but there is no spectroscopic evidence for the centrosymmetric proton-bound dimer. The formation of higher energy isomers may be caused by a kinetic effect, such as the binding of X (=Ar, Ne, or H2) to H+(CO) prior to the formation of X H+(CO)2. Regardless, there is a strong tendency to produce non-centrosymmetric structures in which HCO+ remains an intact core ion.

1.
E.
Herbst
and
W.
Klemperer
, “
The formation and depletion of molecules in dense interstellar clouds
,”
Astrophys. J.
185
,
505
(
1973
).
2.
D.
Smith
, “
The ion chemistry of interstellar clouds
,”
Chem. Rev.
92
,
1473
(
1992
).
3.
T. W.
Hartquist
and
D. A.
Williams
,
The Molecular Astrophysics of Stars and Galaxies
(
Clarendon Press
,
Oxford
,
1998
).
4.
A. G. G. M.
Tielens
,
The Physics and Chemistry of the Interstellar Medium
(
Cambridge University Press
,
2005
).
5.
S.
Petrie
and
D. K.
Böhme
, “
Ions in space
,”
Mass Spectrom. Rev.
26
,
258
(
2007
).
6.
T. P.
Snow
and
V. M.
Bierbaum
, “
Ion chemistry in the interstellar medium
,”
Annu. Rev. Anal. Chem.
1
,
229
(
2008
).
7.
W.
Klemperer
, “
Astronomical chemistry
,”
Annu. Rev. Phys. Chem.
62
,
173
(
2011
).
8.
W. D.
Geppert
and
M.
Larsson
, “
Experimental investigations into astrophysically relevant ionic reactions
,”
Chem. Rev.
113
,
8872
(
2013
).
9.
M.
Mladenović
and
E.
Roueff
, “
Ion-molecule reactions involving HCO+ and N2H+: Isotopologue equilibria from new theoretical calculations and consequences for interstellar isotope fractionation
,”
Astron. Astrophys.
566
,
A144
(
2014
).
10.
E.
Herbst
, “
The synthesis of large interstellar molecules
,”
Int. Rev. Phys. Chem.
36
,
287
(
2017
).
11.
W.
Klemperer
and
V.
Vaida
, “
Molecular complexes in close and far away
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
10584
(
2006
).
12.
W.
Klemperer
, “
Interstellar chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
12232
(
2006
).
13.
D.
Buhl
and
L. E.
Snyder
, “
Unidentified interstellar microwave line
,”
Nature
228
,
267
(
1970
).
14.
W.
Klemperer
, “
Carrier of the interstellar 89.190 GHz line
,”
Nature
227
,
1230
(
1970
).
15.
E.
Herbst
and
W.
Klemperer
, “
Is X-ogen HCO+?
,”
Astrophys. J.
188
,
255
(
1974
).
16.
R. C.
Woods
,
T. A.
Dixon
,
R. J.
Saykally
, and
P. G.
Szanto
, “
Laboratory microwave spectrum of HCO+
,”
Phys. Rev. Lett.
35
,
1269
(
1975
).
17.
K. V. L. N.
Sastry
,
E.
Herbst
, and
F. C.
De Lucia
, “
Millimeter and submillimeter spectra of HCO+ and DCO+
,”
J. Chem. Phys.
75
,
4169
(
1981
).
18.
R. C.
Woods
,
R. J.
Saykally
,
T. G.
Anderson
,
T. A.
Dixon
, and
P. G.
Szanto
, “
The molecular structure of HCO+ by the microwave substitution method
,”
J. Chem. Phys.
75
,
4256
(
1981
).
19.
F.
Tinti
,
L.
Bizzocchi
,
C.
Degli Esposti
, and
L.
Dore
, “
Improved rest frequencies of HCO+ at 1 THz
,”
Astrophys. J.
669
,
L113
(
2007
).
20.
G.
Cazzoli
,
L.
Cludi
,
G.
Buffa
, and
C.
Puzzarini
, “
Precise THz measurements of HCO+, N2H+, and CF+ for astrophysical observations
,”
Astrophys. J., Suppl. Ser.
203
,
11
(
2012
).
21.
C. S.
Gudeman
,
M. H.
Begemann
,
J.
Pfaff
, and
R. J.
Saykally
, “
Velocity modulated infrared laser spectroscopy of molecular ions: The ν1 band of HCO+
,”
Phys. Rev. Lett.
50
,
727
(
1983
).
22.
T.
Amano
, “
The ν1 fundamental band of HCO+ by difference frequency laser spectroscopy
,”
J. Chem. Phys.
79
,
3595
(
1983
).
23.
S. C.
Foster
,
A. R. W.
McKellar
, and
T. J.
Sears
, “
Observation of the ν3 fundamental band of HCO+
,”
J. Chem. Phys.
81
,
578
(
1984
).
24.
P. B.
Davies
,
P. A.
Hamilton
, and
W. J.
Rothwell
, “
Infrared laser spectroscopy of the ν3 fundamental of HCO+
,”
J. Chem. Phys.
81
,
1598
(
1984
).
25.
P. B.
Davies
and
W. J.
Rothwell
, “
Diode laser detection of the bending mode of HCO+
,”
J. Chem. Phys.
81
,
5239
(
1984
).
26.
K.
Kawaguchi
,
C.
Yamada
,
S.
Saito
, and
E.
Hirota
, “
Magnetic field modulated infrared laser spectroscopy of molecular ions: The ν2 band of HCO+
,”
J. Chem. Phys.
82
,
1750
(
1985
).
27.
T.
Nakanaga
and
T.
Amano
, “
Infrared detection of HOC+ by difference frequency laser spectroscopy
,”
J. Mol. Spectrosc.
121
,
502
(
1987
).
28.
M.
Mladenović
, “
Theoretical spectroscopic parameters for isotopic variants of HCO+ and HOC+
,”
J. Chem. Phys.
147
,
114111
(
2017
).
29.
E. J.
Bieske
,
S. A.
Nizkorodov
,
F. R.
Bennett
, and
J. P.
Maier
, “
The infrared spectrum of the H2–HCO+ complex
,”
J. Chem. Phys.
102
,
5152
(
1995
).
30.
S. A.
Nizkorodov
,
O.
Dopfer
,
T.
Ruchti
,
M.
Meuwly
,
J. P.
Maier
, and
E. J.
Bieske
, “
Size effects in cluster infrared spectra: The v1 band of Arn–HCO+ (n = 1–13)
,”
J. Phys. Chem.
99
,
17118
(
1995
).
31.
H.
Linnartz
,
T.
Speck
, and
J. P.
Maier
, “
High-resolution infrared spectrum of the v3 band in Ar–HCO+
,”
Chem. Phys. Lett.
288
,
504
(
1998
).
32.
S. A.
Nizkorodov
,
O.
Dopfer
,
M.
Meuwly
,
J. P.
Maier
, and
E. J.
Bieske
, “
Mid-infrared spectra of the proton-bound complexes Nen–HCO+ (n = 1, 2)
,”
J. Chem. Phys.
105
,
1770
(
1996
).
33.
T.
Salomon
,
M.
Töpfer
,
P.
Schreier
,
S.
Schlemmer
,
H.
Kohguchi
,
L.
Surin
, and
O.
Asvany
, “
Double resonance rotational spectroscopy of He–HCO+
,”
Phys. Chem. Chem. Phys.
21
,
3440
(
2019
).
34.
K. O.
Sullivan
and
G. I.
Gellene
, “
Ab initio study of Arn–HCO+ (n = 0–6): Insight into size dependent cluster ion properties
,”
Int. J. Mass Spectrom.
201
,
121
(
2000
).
35.
P.
Botschwina
and
R.
Oswald
, “
Coupled cluster calculations for Ar⋯HCO+
,”
J. Mol. Struct.
599
,
371
(
2001
).
36.
R. P.
Bell
,
The Proton in Chemistry
(
Cornell University Press
,
Ithaca, NY
,
1959
).
37.
Proton Transfer Reactions
, edited by
E.
Caldin
and
V.
Gold
(
Chapman & Hall
,
London
,
1975
).
38.
Hydrogen Transfer Reactions
, edited by
J. T.
Hynes
,
J. P.
Klinman
,
H.-H.
Limbach
, and
R. L.
Schowen
(
Wiley-VCH Publishers
,
Weinheim
,
2006
), Vol. 1-4.
39.
A. G.
Harrison
,
Chemical Ionization Mass Spectrometry
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
1992
).
40.
S. A.
McLuckey
,
D.
Cameron
, and
R. G.
Cooks
, “
Proton affinities from dissociations of proton-bound dimers
,”
J. Am. Chem. Soc.
103
,
1313
(
1981
).
41.
J. W.
Larson
and
T. B.
McMahon
, “
Formation, thermochemistry, and relative stabilities of proton-bound dimers of oxygen n-donor bases from ion cyclotron resonance solvent-exchange equilibria measurements
,”
J. Am. Chem. Soc.
104
,
6255
(
1982
).
42.
W. Y.
Feng
,
M.
Goldenberg
, and
C.
Lifshitz
, “
Reactions of proton-bound dimers
,”
J. Am. Soc. Mass Spectrom.
5
,
695
(
1994
).
43.
R. G.
Ewing
,
G. A.
Eiceman
, and
J. A.
Stone
, “
Proton-bound cluster ions in ion mobility spectrometry
,”
Int. J. Mass Spectrom.
193
,
57
(
1999
).
44.
M.
Meot-Ner
, “
The ionic hydrogen bond
,”
Chem. Rev.
105
,
213
(
2005
).
45.
R. S.
Blake
,
P. S.
Monks
, and
A. M.
Ellis
, “
Proton-transfer reaction mass spectrometry
,”
Chem. Rev.
109
,
861
(
2009
).
46.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
, “
Gas-phase infrared spectrum of the protonated water dimer
,”
Science
299
,
1375
(
2003
).
47.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
, “
Spectral signatures of hydrated proton vibrations in water clusters
,”
Science
308
,
1765
(
2005
).
48.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
, “
Predissociation spectroscopy of the argon-solvated H5O2+ “Zundel” cation in the 1000–1900 cm−1 region
,”
J. Chem. Phys.
121
,
11523
(
2004
).
49.
E. G.
Diken
,
J. M.
Headrick
,
J. R.
Roscioli
,
J. C.
Bopp
,
M. A.
Johnson
, and
A. B.
McCoy
, “
Fundamental excitations of the shared proton in the H3O2 and H5O2+ complexes
,”
J. Phys. Chem. A
109
,
1487
(
2005
).
50.
N. I.
Hammer
,
E. G.
Diken
,
J. R.
Roscioli
,
M. A.
Johnson
,
E. M.
Myshakin
,
K. D.
Jordan
,
A. B.
McCoy
,
X.
Huang
,
J. M.
Bowman
, and
S.
Carter
, “
The vibrational predissociation spectra of the H5O2+RGn (RG = Ar, Ne) clusters: Correlation of the solvent perturbations in the free OH shared proton transitions of the Zundel ion
,”
J. Chem. Phys.
122
,
244301
(
2005
).
51.
T. D.
Fridgen
,
L.
MacAleese
,
P.
Maître
,
T. B.
McMahon
,
P.
Boissel
, and
J.
Lemaire
, “
Infrared spectra of homogeneous and heterogeneous proton-bound dimers in the gas phase
,”
Phys. Chem. Chem. Phys.
7
,
2747
(
2005
).
52.
T. D.
Fridgen
,
L.
MacAleese
,
T. B.
McMahon
,
J.
Lemaire
, and
P.
Maître
, “
Gas phase infrared multiple-photon dissociation spectra of methanol, ethanol and propanol proton-bound dimers, protonated propanol and the propanol/water proton-bound dimer
,”
Phys. Chem. Chem. Phys.
8
,
955
(
2006
).
53.
J. R.
Roscioli
,
L. R.
McCunn
, and
M. A.
Johnson
, “
Quantum structure of the intermolecular proton bond
,”
Science
316
,
249
(
2007
).
54.
T.
Pankewitz
,
A.
Lagutschenkov
,
G.
Niedner-Schatteburg
,
S. S.
Xantheas
, and
Y.-T.
Lee
, “
Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation
,”
J. Chem. Phys.
126
,
074307
(
2007
).
55.
Y.
Yang
,
O.
Kühn
,
G.
Santambrogio
,
D. J.
Goebbert
, and
K. R.
Asmis
, “
Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4+(NH3)1–4
,”
J. Chem. Phys.
129
,
224302
(
2008
).
56.
G. H.
Gardenier
,
J. R.
Roscioli
, and
M. A.
Johnson
, “
Intermolecular proton binding in the presence of a large electric dipole: Ar-tagged vibrational predissociation spectroscopy of the CH3CN·H+·OH2 and CH3CN·D+·OD2 complexes
,”
J. Phys. Chem. A
112
,
12022
(
2008
).
57.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
, and
M. A.
Duncan
, “
The structure of protonated acetone and its dimer: Infrared photodissociation spectroscopy from 800–4000 cm−1
,”
Phys. Chem. Chem. Phys.
10
,
77
(
2008
).
58.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
, and
M. A.
Duncan
, “
The structure of protonated carbon dioxide clusters: Infrared photodissociation spectroscopy and ab initio calculations
,”
J. Phys. Chem. A
112
,
950
(
2008
).
59.
G. E.
Douberly
,
A. M.
Ricks
,
B. W.
Ticknor
,
W. C.
McKee
,
P. v. R.
Schleyer
, and
M. A.
Duncan
, “
Infrared photodissociation spectroscopy of protonated acetylene and its clusters
,”
J. Phys. Chem. A
112
,
1897
(
2008
).
60.
A. M.
Ricks
,
G. E.
Douberly
, and
M. A.
Duncan
, “
Infrared spectroscopy of the protonated nitrogen dimer: The complexity of shared proton vibrations
,”
J. Chem. Phys.
131
,
104312
(
2009
).
61.
T. C.
Cheng
,
B.
Bandyopadhyay
,
Y.
Wang
,
S.
Carter
,
B. J.
Braams
,
J. M.
Bowman
, and
M. A.
Duncan
, “
Shared proton mode lights up the infrared spectrum of fluxional cations H5+ and D5+
,”
J. Phys. Chem. Lett.
1
,
758
(
2010
).
62.
G. E.
Douberly
,
R. S.
Walters
,
J.
Cui
,
K. D.
Jordan
, and
M. A.
Duncan
, “
Infrared spectroscopy of small protonated water clusters H+(H2O)n (n = 2–5): Isomers, argon tagging and deuteration
,”
J. Phys. Chem. A
114
,
4570
(
2010
).
63.
B.
Bandyopadhyay
,
T. C.
Cheng
, and
M. A.
Duncan
, “
Proton sharing in hydronium–nitrogen clusters probed with infrared spectroscopy
,”
Int. J. Mass Spectrom.
297
,
124
(
2010
).
64.
T. C.
Cheng
,
L.
Jiang
,
K. R.
Asmis
,
Y.
Wang
,
J. M.
Bowman
,
A. M.
Ricks
, and
M. A.
Duncan
, “
Mid- and far-IR spectra of H5+ and D5+ compared to the predictions of anharmonic theory
,”
J. Phys. Chem. Lett.
3
,
3160
(
2012
).
65.
T. C.
Cheng
,
B.
Bandyopadhyay
,
J. D.
Mosley
, and
M. A.
Duncan
, “
IR spectroscopy of protonation in benzene–water nanoclusters: Hydronium, Zundel, and Eigen at a hydrophobic interface
,”
J. Am. Chem. Soc.
134
,
13046
(
2012
).
66.
D. C.
McDonald
,
D. T.
Mauney
,
D.
Leicht
,
J. H.
Marks
,
J. A.
Tan
,
J.-L.
Kuo
, and
M. A.
Duncan
, “
Communication: Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation
,”
J. Chem. Phys.
145
,
231101
(
2016
).
67.
J. P.
Wagner
,
D. C.
McDonald
 II
, and
M. A.
Duncan
, “
Infrared spectroscopy of the astrophysically relevant protonated formaldehyde dimer
,”
J. Phys. Chem. A
122
,
192
(
2018
).
68.
J. P.
Wagner
,
D. C.
McDonald
 II
, and
M. A.
Duncan
, “
Spectroscopy of proton coordination with ethylenediamine
,”
J. Phys. Chem. A
122
,
5168
(
2018
).
69.
D. C.
McDonald
 II
,
J. P.
Wagner
,
A. B.
McCoy
, and
M. A.
Duncan
, “
Near-infrared spectroscopy and anharmonic theory of protonated water clusters: Higher elevations in the hydrogen bonding landscape
,”
J. Phys. Chem. Lett.
9
,
5664
(
2018
).
70.
P. R.
Franke
,
M. A.
Duncan
,
G. E.
Douberly
, “
Infrared photodissociation spectroscopy and anharmonic vibrational study of the HO4+ molecular ion
,”
J. Chem. Phys.
152
,
174309
(
2020
).
71.
M. A.
Boyer
,
C. S.
Chiu
,
D. C.
McDonald
 II
,
J. P.
Wagner
,
J. E.
Colley
,
D. S.
Orr
,
M. A.
Duncan
, and
A. B.
McCoy
, “
The role of tunneling in the spectra of H5+ and D5+ up to 7300 cm−1
,”
J. Phys. Chem. A
124
,
4427
(
2020
).
72.
M.
Tsuge
,
J.
Kalinowski
,
R. B.
Gerber
, and
Y.-P.
Lee
, “
Infrared identification of proton-bound rare-gas dimers (XeHXe)+, (KrHKr)+, and (KrHXe)+ and their deuterated species in solid hydrogen
,”
J. Phys. Chem. A
119
,
2651
(
2015
).
73.
P.
Das
,
M.
Tsuge
, and
Y.-P.
Lee
, “
Infrared absorption of t-HOCO+, H+(CO2)2, and HCO2 produced in electron bombardment of CO2 in solid para-H2
,”
J. Chem. Phys.
145
,
014306
(
2016
).
74.
H.-Y.
Liao
,
M.
Tsuge
,
J. A.
Tan
,
J.-L.
Kuo
, and
Y.-P.
Lee
, “
Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2–H+–N2, N2–D+–N2, and 15N2–H+15N2 in solid para-hydrogen
,”
Phys. Chem. Chem. Phys.
19
,
20484
(
2017
).
75.
K.
Jennings
,
J. V.
Headley
, and
R. S.
Mason
, “
The temperature dependence of ion-molecule association reactions
,”
Int. J. Mass Spectrom. Ion Phys.
45
,
315
(
1982
).
76.
D.
Verdes
,
H.
Linnartz
,
J. P.
Maier
,
P.
Botschwina
,
R.
Oswald
,
P.
Rosmus
, and
P. J.
Knowles
, “
Spectroscopic and theoretical characterization of linear centrosymmetric N≡NH+N≡N
,”
J. Chem. Phys.
111
,
8400
(
1999
).
77.
P.
Botschwina
,
T.
Dutoi
,
M.
Mladenović
,
R.
Oswald
,
S.
Schmatz
, and
H.
Stoll
, “
Theoretical investigations of proton-bound cluster ions
,”
Faraday Discuss.
118
,
433
(
2001
).
78.
J. J.
Szymczak
,
S.
Roszak
,
R. W.
Gora
, and
J.
Leszczynski
, “
Molecular properties of protonated homogeneous and mixed carbon oxide and carbon dioxide clusters
,”
J. Chem. Phys.
119
,
6560
(
2003
).
79.
B.
Chan
,
J. E.
Del Bene
, and
L.
Radom
, “
Proton-bound homodimers: How are the binding energies related to proton affinities?
,”
J. Am. Chem. Soc.
129
,
12197
(
2007
).
80.
K.
Terrill
and
D. J.
Nesbitt
, “
Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC–H+–CO and N2–H+–N2
,”
Phys. Chem. Chem. Phys.
12
,
8311
(
2010
).
81.
C. E.
Cotton
,
J. S.
Francisco
,
R.
Linguerri
, and
A. O.
Mitrushchenkov
, “
Structural and spectroscopic study of the van der Waals complex of CO with HCO+ and the isoelectronic complex of CS with HCS+
,”
J. Chem. Phys.
136
,
184307
(
2012
).
82.
Q.
Yu
,
J. M.
Bowman
,
R. C.
Fortenberry
,
J. S.
Mancini
,
T. J.
Lee
,
T. D.
Crawford
,
W.
Klemperer
, and
J. S.
Francisco
, “
Structure, anharmonic vibrational frequencies, and intensities of NNHNN+
,”
J. Phys. Chem. A
119
,
11623
(
2015
).
83.
R. C.
Fortenberry
,
Q.
Yu
,
J. S.
Mancini
,
J. M.
Bowman
,
T. J.
Lee
,
T. D.
Crawford
,
W. F.
Klemperer
, and
J. S.
Francisco
, “
Communication: Spectroscopic consequences of proton delocalization in OCHCO+
,”
J. Chem. Phys.
143
,
071102
(
2015
).
84.
M. A.
Duncan
, “
Infrared laser spectroscopy of mass-selected carbocations
,”
J. Phys. Chem. A
116
,
11477
(
2012
).
85.
D. S.
Cornett
,
M.
Peschke
,
K.
LaiHing
,
P. Y.
Cheng
,
K. F.
Willey
, and
M. A.
Duncan
, “
Reflectron time-of-flight mass spectrometer for laser photodissociation
,”
Rev. Sci. Instrum.
63
,
2177
(
1992
).
86.
M.
Okumura
,
L. I.
Yeh
,
J. D.
Myers
, and
Y. T.
Lee
, “
Infrared spectra of the cluster ions H7O3+·H2 and H9O4+·H2
,”
J. Chem. Phys.
85
,
2328
(
1986
).
87.
M.
Okumura
,
L. I.
Yeh
, and
Y. T.
Lee
, “
Infrared spectroscopy of the cluster ions H3+·(H2)n
,”
J. Chem. Phys.
88
,
79
(
1988
).
88.
E. J.
Bieske
and
J. P.
Maier
, “
Spectroscopic studies of ionic complexes and clusters
,”
Chem. Rev.
93
,
2603
(
1993
).
89.
T.
Ebata
,
A.
Fujii
, and
N.
Mikami
, “
Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions
,”
Int. Rev. Phys. Chem.
17
,
331
(
1998
).
90.
E. J.
Bieske
and
O.
Dopfer
, “
High resolution spectroscopy of cluster ions
,”
Chem. Rev.
100
,
3963
(
2000
).
91.
M. A.
Duncan
, “
Frontiers in the spectroscopy of mass-selected molecular ions
,”
Int. J. Mass Spectrom.
200
,
545
(
2000
).
92.
M. A.
Duncan
, “
Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes
,”
Int. Rev. Phys. Chem.
22
,
407
(
2003
).
93.
N. R.
Walker
,
R. S.
Walters
, and
M. A.
Duncan
, “
Frontiers in the infrared spectroscopy of gas phase metal ion complexes
,”
New J. Chem.
29
,
1495
(
2005
).
94.
W. H.
Robertson
and
M. A.
Johnson
, “
Molecular aspects of halide ion hydration: The cluster approach
,”
Annu. Rev. Phys. Chem.
54
,
173
(
2003
).
95.
T. R.
Rizzo
,
J. A.
Stearns
, and
O. V.
Boyarkin
, “
Spectroscopic studies of cold, gas-phase biomolecular ions
,”
Int. Rev. Phys. Chem.
28
,
481
(
2009
).
96.
T.
Baer
and
R. C.
Dunbar
, “
Ion spectroscopy: Where did it come from; where is it now; and where is it going?
,”
J. Am. Soc. Mass Spectrom.
21
,
681
(
2010
).
97.
M. Z.
Kamrath
,
E.
Garand
,
P. A.
Jordan
,
C. M.
Leavitt
,
A. B.
Wolk
,
M. J.
van Stipdonk
,
S. J.
Miller
, and
M. A.
Johnson
, “
Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions
,”
J. Am. Chem. Soc.
133
,
6440
(
2011
).
98.
J. G.
Redwine
,
Z. A.
Davis
,
N. L.
Burke
,
R. A.
Oglesbee
,
S. A.
McLuckey
, and
T. S.
Zwier
, “
A novel ion trap based tandem mass spectrometer for the spectroscopic study of cold gas phase polyatomic ions
,”
Int. J. Mass Spectrom.
348
,
9
(
2013
).
99.
S.
Chakrabarty
,
M.
Holz
,
E. K.
Campbell
,
A.
Banerjee
,
D.
Gerlich
, and
J. P.
Maier
, “
A novel method to measure electronic spectra of cold molecular ions
,”
J. Phys. Chem. Lett.
4
,
4051
(
2013
).
100.
A. B.
Wolk
,
C. M.
Leavitt
,
E.
Garand
, and
M. A.
Johnson
, “
Cryogenic ion chemistry and spectroscopy
,”
Acc. Chem. Res.
47
,
202
(
2014
).
101.
N.
Heine
and
K. R.
Asmis
, “
Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry
,”
Int. Rev. Phys. Chem.
34
,
1
(
2015
).
102.
J.
Roithová
,
A.
Gray
,
E.
Andris
,
J.
Jašík
, and
D.
Gerlich
, “
Helium tagging infrared photodissociation spectroscopy of reactive ions
,”
Acc. Chem. Res.
49
,
223
(
2016
).
103.
M.
Bahou
,
Y.-J.
Wu
, and
Y.-P.
Lee
, “
A new method for investigating infrared spectra of protonated benzene (C6H7+) and cyclohexadienyl radical (c-C6H7) using para-hydrogen
,”
J. Chem. Phys.
136
,
154304
(
2012
).
104.
M.
Bahou
,
P.
Das
,
Y.-F.
Lee
,
Y.-J.
Wu
, and
Y.-P.
Lee
, “
Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices
,”
Phys. Chem. Chem. Phys.
16
,
2200
(
2014
).
105.
M.
Tsuge
,
C.-Y.
Tseng
, and
Y.-P.
Lee
, “
Spectroscopy of prospective interstellar ions and radicals isolated in para-hydrogen matrices
,”
Phys. Chem. Chem. Phys.
20
,
5344
(
2018
).
106.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 09, Revision D. 01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
107.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
, with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
; with the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J.
Aa. Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
,
2010
.
108.
H. B.
Bürgi
,
J. D.
Dunitz
,
J. M.
Lehn
, and
G.
Wipff
, “
Stereochemistry of reaction paths at carbonyl centers
,”
Tetrahedron
30
,
1563
(
1974
).
109.
Y. T.
Angel Wong
,
S. Y.
Toh
,
P.
Djuricanin
, and
T.
Momose
, “
Conformational composition and population analysis of β-alanine isolated in solid parahydrogen
,”
J. Mol. Spectrosc.
310
,
23
(
2015
).

Supplementary Material

You do not currently have access to this content.