In this paper, we have analyzed the time series associated with the iterative scheme of a double similarity transformed coupled cluster theory. The coupled iterative scheme to solve the ground state Schrödinger equation is cast as a multivariate time-discrete map, and the solutions show the universal Feigenbaum dynamics. Using recurrence analysis, it is shown that the dynamics of the iterative process is dictated by a small subgroup of cluster operators, mostly those involving chemically active orbitals, whereas all other cluster operators with smaller amplitudes are enslaved. Using synergetics, we will indicate how the master-slave dynamics can suitably be exploited to develop a novel coupled-cluster algorithm in a much reduced dimension.

1.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
2.
J.
Čížek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
89
(
1989
).
3.
J.
Čížek
and
J.
Paldus
, “
Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods
,”
Int. J. Quantum Chem.
5
,
359
379
(
1971
).
4.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
, “
Coupled cluster methods with non-iterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients
,”
J. Chem. Phys.
98
,
8718
8733
(
1993
).
6.
K.
Ragavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
7.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
, “
Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods
,”
Chem. Phys. Lett.
165
,
513
522
(
1990
).
8.
R.
Maitra
,
Y.
Akinaga
, and
T.
Nakajima
, “
A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential
,”
J. Chem. Phys.
147
,
074103-1
074103-10
(
2017
).
9.
R.
Maitra
and
T.
Nakajima
, “
Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing
,”
J. Chem. Phys.
147
,
204108-1
204108-8
(
2017
).
10.
M.
Nooijen
and
V.
Lotrich
, “
Brueckner based generalized coupled cluster theory: Implicit inclusion of higher excitation effects
,”
J. Chem. Phys.
113
,
4549
4557
(
2000
).
11.
P.
Szakács
and
P. R.
Surján
, “
Stability conditions for the coupled cluster equations
,”
Int. J. Quantum Chem.
108
,
2043
2052
(
2008
).
12.
P.
Szakács
and
P. R.
Surján
, “
Iterative solution of Bloch-type equations: Stability conditions and chaotic behavior
,”
J. Math. Chem.
43
,
314
327
(
2008
).
13.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
14.
G. E.
Scuseria
,
T. J.
Lee
, and
H. F.
Schaefer
 III
, “
Accelerating the convergence of the coupled-cluster approach: The use of the DIIS method
,”
Chem. Phys. Lett.
130
,
236
239
(
1986
).
15.
I.
Malkin
, in
Theory of Stability of Motion
(
State Publishing House
,
Moscow, Leningrad
,
1952
), Chap. II.
16.
J. A.
Yorke
and
K. T.
Alligood
, “
Period doubling cascades of attractors: A prerequisite for horseshoes
,”
Commun. Math. Phys.
101
,
305
321
(
1985
).
17.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
18.
P.
Collet
,
J.-P.
Eckmann
, and
H.
Koch
, “
Period doubling bifurcations for families of maps on Rn
,”
J. Stat. Phys.
25
,
1
14
(
1981
).
19.
H.
Haken
, “
Nonlinear equations. The slaving principle
,” in
Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1983
), pp.
187
221
.
20.
H.
Haken
and
A.
Wunderlin
, “
Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps
,”
Z. Phys. B
47
,
179
187
(
1982
).
21.
H.
Haken
, “
Synergetics: An overview
,”
Rep. Prog. Phys.
52
,
515
553
(
1989
).
22.
H.
Poincaré
, “
Sur la problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
1
271
(
1890
).
23.
J.-P.
Eckmann
,
S.
Kamphorts
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
24.
J. P.
Zbilut
and
C. L.
Webber
, Jr.
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
,
199
203
(
1992
).
25.
N.
Marwan
,
M.
Carman Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
26.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, see www.recurrence-plot.tk for recurrence plots; accessed May 19, 2020.
27.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, Jr.
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
,
255
260
(
1996
).
28.
J.
Theiler
, “
Estimating fractal dimension
,”
J. Opt. Soc. Am. A
7
,
1055
1073
(
1990
).
29.
C.
Letellier
, “
Estimating the Shannon entropy: Recurrence plots versus symbolic dynamics
,”
Phys. Rev. Lett.
96
,
254102
(
2006
).
30.
G.
Corso
,
T.
de Lima Prado
,
G. Z.
dos Santos Lima
,
J.
Kurths
, and
S. R.
Lopes
, “
Quantifying entropy using recurrence matrix microstates
,”
Chaos
28
,
083108
(
2018
).
31.
D.
Eroglu
,
T. K. D.
Peron
,
N.
Marwan
,
F. A.
Rodrigues
,
L. D. F.
Costa
,
M.
Sebek
,
I. Z.
Kiss
, and
J.
Kurths
, “
Entropy of weighted recurrence plots
,”
Phys. Rev. E
90
,
042919
(
2014
).

Supplementary Material

You do not currently have access to this content.