In this paper, we have analyzed the time series associated with the iterative scheme of a double similarity transformed coupled cluster theory. The coupled iterative scheme to solve the ground state Schrödinger equation is cast as a multivariate time-discrete map, and the solutions show the universal Feigenbaum dynamics. Using recurrence analysis, it is shown that the dynamics of the iterative process is dictated by a small subgroup of cluster operators, mostly those involving chemically active orbitals, whereas all other cluster operators with smaller amplitudes are enslaved. Using synergetics, we will indicate how the master-slave dynamics can suitably be exploited to develop a novel coupled-cluster algorithm in a much reduced dimension.
REFERENCES
1.
J.
Čížek
, “On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,” J. Chem. Phys.
45
, 4256
–4266
(1966
).2.
J.
Čížek
, “On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,” Adv. Chem. Phys.
14
, 35
–89
(1989
).3.
J.
Čížek
and J.
Paldus
, “Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods
,” Int. J. Quantum Chem.
5
, 359
–379
(1971
).4.
R. J.
Bartlett
and M.
Musiał
, “Coupled-cluster theory in quantum chemistry
,” Rev. Mod. Phys.
79
, 291
(2007
).5.
J. D.
Watts
, J.
Gauss
, and R. J.
Bartlett
, “Coupled cluster methods with non-iterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients
,” J. Chem. Phys.
98
, 8718
–8733
(1993
).6.
K.
Ragavachari
, G. W.
Trucks
, J. A.
Pople
, and M.
Head-Gordon
, “A fifth-order perturbation comparison of electron correlation theories
,” Chem. Phys. Lett.
157
, 479
–483
(1989
).7.
R. J.
Bartlett
, J. D.
Watts
, S. A.
Kucharski
, and J.
Noga
, “Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods
,” Chem. Phys. Lett.
165
, 513
–522
(1990
).8.
R.
Maitra
, Y.
Akinaga
, and T.
Nakajima
, “A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential
,” J. Chem. Phys.
147
, 074103-1
–074103-10
(2017
).9.
R.
Maitra
and T.
Nakajima
, “Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing
,” J. Chem. Phys.
147
, 204108-1
–204108-8
(2017
).10.
M.
Nooijen
and V.
Lotrich
, “Brueckner based generalized coupled cluster theory: Implicit inclusion of higher excitation effects
,” J. Chem. Phys.
113
, 4549
–4557
(2000
).11.
P.
Szakács
and P. R.
Surján
, “Stability conditions for the coupled cluster equations
,” Int. J. Quantum Chem.
108
, 2043
–2052
(2008
).12.
P.
Szakács
and P. R.
Surján
, “Iterative solution of Bloch-type equations: Stability conditions and chaotic behavior
,” J. Math. Chem.
43
, 314
–327
(2008
).13.
P.
Pulay
, “Convergence acceleration of iterative sequences. The case of SCF iteration
,” Chem. Phys. Lett.
73
, 393
–398
(1980
).14.
G. E.
Scuseria
, T. J.
Lee
, and H. F.
Schaefer
III, “Accelerating the convergence of the coupled-cluster approach: The use of the DIIS method
,” Chem. Phys. Lett.
130
, 236
–239
(1986
).15.
I.
Malkin
, in Theory of Stability of Motion
(State Publishing House
, Moscow, Leningrad
, 1952
), Chap. II.16.
J. A.
Yorke
and K. T.
Alligood
, “Period doubling cascades of attractors: A prerequisite for horseshoes
,” Commun. Math. Phys.
101
, 305
–321
(1985
).17.
M. J.
Feigenbaum
, “Quantitative universality for a class of nonlinear transformations
,” J. Stat. Phys.
19
, 25
–52
(1978
).18.
P.
Collet
, J.-P.
Eckmann
, and H.
Koch
, “Period doubling bifurcations for families of maps on Rn
,” J. Stat. Phys.
25
, 1
–14
(1981
).19.
H.
Haken
, “Nonlinear equations. The slaving principle
,” in Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(Springer Berlin Heidelberg
, Berlin, Heidelberg
, 1983
), pp. 187
–221
.20.
H.
Haken
and A.
Wunderlin
, “Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps
,” Z. Phys. B
47
, 179
–187
(1982
).21.
H.
Haken
, “Synergetics: An overview
,” Rep. Prog. Phys.
52
, 515
–553
(1989
).22.
H.
Poincaré
, “Sur la problème des trois corps et les équations de la dynamique
,” Acta Math.
13
, 1
–271
(1890
).23.
J.-P.
Eckmann
, S.
Kamphorts
, and D.
Ruelle
, “Recurrence plots of dynamical systems
,” Europhys. Lett.
4
, 973
–977
(1987
).24.
J. P.
Zbilut
and C. L.
Webber
, Jr., “Embeddings and delays as derived from quantification of recurrence plots
,” Phys. Lett. A
171
, 199
–203
(1992
).25.
N.
Marwan
, M.
Carman Romano
, M.
Thiel
, and J.
Kurths
, “Recurrence plots for the analysis of complex systems
,” Phys. Rep.
438
, 237
–329
(2007
).26.
N.
Marwan
, M. C.
Romano
, M.
Thiel
, and J.
Kurths
, see www.recurrence-plot.tk for recurrence plots; accessed May 19, 2020.27.
L. L.
Trulla
, A.
Giuliani
, J. P.
Zbilut
, and C. L.
Webber
, Jr., “Recurrence quantification analysis of the logistic equation with transients
,” Phys. Lett. A
223
, 255
–260
(1996
).28.
J.
Theiler
, “Estimating fractal dimension
,” J. Opt. Soc. Am. A
7
, 1055
–1073
(1990
).29.
C.
Letellier
, “Estimating the Shannon entropy: Recurrence plots versus symbolic dynamics
,” Phys. Rev. Lett.
96
, 254102
(2006
).30.
G.
Corso
, T.
de Lima Prado
, G. Z.
dos Santos Lima
, J.
Kurths
, and S. R.
Lopes
, “Quantifying entropy using recurrence matrix microstates
,” Chaos
28
, 083108
(2018
).31.
D.
Eroglu
, T. K. D.
Peron
, N.
Marwan
, F. A.
Rodrigues
, L. D. F.
Costa
, M.
Sebek
, I. Z.
Kiss
, and J.
Kurths
, “Entropy of weighted recurrence plots
,” Phys. Rev. E
90
, 042919
(2014
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.