We present pyflosic, an open-source, general-purpose python implementation of the Fermi–Löwdin orbital self-interaction correction (FLO-SIC), which is based on the python simulation of chemistry framework (pyscf) electronic structure and quantum chemistry code. Thanks to pyscf, pyflosic can be used with any kind of Gaussian-type basis set, various kinds of radial and angular quadrature grids, and all exchange-correlation functionals within the local density approximation, generalized-gradient approximation (GGA), and meta-GGA provided in the libxc and xcfun libraries. A central aspect of FLO-SIC is the Fermi-orbital descriptors, which are used to estimate the self-interaction correction. Importantly, they can be initialized automatically within pyflosic; they can also be optimized within pyflosic with an interface to the atomic simulation environment, a python library that provides a variety of powerful gradient-based algorithms for geometry optimization. Although pyflosic has already facilitated applications of FLO-SIC to chemical studies, it offers an excellent starting point for further developments in FLO-SIC approaches, thanks to its use of a high-level programming language and pronounced modularity.

1.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
(
2015
); arXiv:1412.0649.
2.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
et al., “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
); arXiv:1802.06922.
3.
S.
Lehtola
,
C.
Steigemann
,
M. J. T.
Oliveira
, and
M. A. L.
Marques
, “
Recent developments in LIBXC—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
(
2018
).
4.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
, “
adcc: A versatile toolkit for rapid development of algebraic–diagrammatic construction methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(in press); arXiv:1910.07757.
5.
P.
Koval
,
M.
Barbry
, and
D.
Sánchez-Portal
, “
PySCF-NAO: An efficient and flexible implementation of linear response time-dependent density functional theory with numerical atomic orbitals
,”
Comput. Phys. Commun.
236
,
188
(
2019
).
6.
S.
Iskakov
,
A. A.
Rusakov
,
D.
Zgid
, and
E.
Gull
, “
Effect of propagator renormalization on the band gap of insulating solids
,”
Phys. Rev. B
100
,
085112
(
2019
); arXiv:1812.07027 .
7.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
); arXiv:2002.12531.
8.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
9.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
10.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
); arXiv:1412.3101.
11.
M. R.
Pederson
and
T.
Baruah
, “
Self-interaction corrections within the Fermi-orbital-based formalism
,”
Adv. At., Mol., Opt. Phys.
64
,
153
(
2015
).
12.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the Fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
13.
L.
Fiedler
, “
Implementation and reassessment of the Fermi–Löwdin orbital self-interaction correction for LDA, GGA and mGGA functionals
,” M.Sc. thesis,
TU Bergakademie Freiberg
,
2018
.
14.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
et al., “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
15.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
16.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
17.
Q.
Sun
, “
Co-iterative augmented Hessian method for orbital optimization
,” arXiv:1610.08423 (
2016
).
18.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
(
1990
).
19.
M. R.
Pederson
,
K. A.
Jackson
, and
W. E.
Pickett
, “
Local-density-approximation-based simulations of hydrocarbon interactions with applications to diamond chemical vapor deposition
,”
Phys. Rev. B
44
,
3891
(
1991
).
20.
M. R.
Pederson
and
K. A.
Jackson
, “
Pseudoenergies for simulations on metallic systems
,”
Phys. Rev. B
43
,
7312
(
1991
).
21.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
(
1992
).
22.
D.
Porezag
and
M. R.
Pederson
, “
Infrared intensities and Raman-scattering activities within density-functional theory
,”
Phys. Rev. B
54
,
7830
(
1996
).
23.
D. V.
Porezag
, “
Development of ab-initio and approximate density functional methods and their application to complex fullerene systems
,” Ph.D. thesis,
TU Chemnitz
,
1997
.
24.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
(
1999
).
25.
J.
Kortus
and
M. R.
Pederson
, “
Magnetic and vibrational properties of the uniaxial Fe13O8 cluster
,”
Phys. Rev. B
62
,
5755
(
2000
).
26.
M. R.
Pederson
,
D. V.
Porezag
,
J.
Kortus
, and
D. C.
Patton
, “
Strategies for massively parallel local-orbital-based electronic structure methods
,”
Phys. Status Solidi B
217
,
197
(
2000
).
27.
F. W.
Aquino
and
B. M.
Wong
, “
Additional insights between Fermi–Löwdin orbital SIC and the localization equation constraints in SIC-DFT
,”
J. Phys. Chem. Lett.
9
,
6456
(
2018
).
28.
F. W.
Aquino
,
R.
Shinde
, and
B. M.
Wong
, “
Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi–Löwdin orbital self-interaction correction approach
,”
J. Comput. Chem.
41
,
1200
(
2020
).
29.
B. P.
Pritchard
,
D.
Altarawy
,
B. T.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
A new basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
(
2019
).
30.
S. R.
Jensen
,
S.
Saha
,
J. A.
Flores-Livas
,
W.
Huhn
,
V.
Blum
,
S.
Goedecker
, and
L.
Frediani
, “
The elephant in the room of density functional theory calculations
,”
J. Phys. Chem. Lett.
8
,
1449
(
2017
); arXiv:1702.00957.
31.
F.
Jensen
, “
How large is the elephant in the density functional theory room?
,”
J. Phys. Chem. A
121
,
6104
(
2017
); arXiv:1704.08832.
32.
D.
Feller
and
D. A.
Dixon
, “
Density functional theory and the basis set truncation problem with correlation consistent basis sets: Elephant in the room or mouse in the closet?
,”
J. Phys. Chem. A
122
,
2598
(
2018
).
33.
S.
Lehtola
, “
Polarized Gaussian basis sets from one-electron ions
,”
J. Chem. Phys.
152
,
134108
(
2020
); arXiv:2001.04224.
34.
S.
Lehtola
, “
Curing basis set overcompleteness with pivoted Cholesky decompositions
,”
J. Chem. Phys.
151
,
241102
(
2019
); arXiv:1911.10372.
35.
S.
Lehtola
, “
Accurate reproduction of strongly repulsive interatomic potentials
,”
Phys. Rev. A
101
,
032504
(
2020
); arXiv:1912.12624.
36.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
, “
Arbitrary-order density functional response theory from automatic differentiation
,”
J. Chem. Theory Comput.
6
,
1971
(
2010
).
37.
See https://www.tddft.org/programs/libxc/functionals/ for list of functionals in LIBXC; accessed 17 July 2020 and https://xcfun.readthedocs.io/en/latest/functionals.html for those in XCFUN; accessed 17 July 2020.
38.
S.
Lehtola
and
H.
Jónsson
, “
Variational, self-consistent implementation of the Perdew–Zunger self-interaction correction with complex optimal orbitals
,”
J. Chem. Theory Comput.
10
,
5324
(
2014
).
39.
C. D.
Sherrill
, “
Frontiers in electronic structure theory
,”
J. Chem. Phys.
132
,
110902
(
2010
).
40.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
); arXiv:1201.3679.
41.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
(
2008
).
42.
J. P.
Perdew
,
A.
Ruzsinszky
,
L. A.
Constantin
,
J.
Sun
, and
G. I.
Csonka
, “
Some fundamental issues in ground-state density functional theory: A guide for the perplexed
,”
J. Chem. Theory Comput.
5
,
902
(
2009
).
43.
B. G.
Johnson
,
C. A.
Gonzales
,
P. M. W.
Gill
, and
J. A.
Pople
, “
A density functional study of the simplest hydrogen abstraction reaction. Effect of self-interaction correction
,”
Chem. Phys. Lett.
221
,
100
(
1994
).
44.
E.
Kraisler
and
L.
Kronik
, “
Piecewise linearity of approximate density functionals revisited: Implications for Frontier orbital energies
,”
Phys. Rev. Lett.
110
,
126403
(
2013
); arXiv:1211.5950.
45.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
46.
M. R.
Pederson
and
C. C.
Lin
, “
Localized and canonical atomic orbitals in self-interaction corrected local density functional approximation
,”
J. Chem. Phys.
88
,
1807
(
1988
).
47.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Ionization potentials and electron affinities in the Perdew–Zunger self-interaction corrected density-functional theory
,”
J. Chem. Phys.
122
,
184107
(
2005
).
48.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms
,”
Phys. Rev. A
84
,
050501
(
2011
); arXiv:1308.6063.
49.
H.
Gudmundsdóttir
,
Y.
Zhang
,
P. M.
Weber
, and
H.
Jónsson
, “
Self-interaction corrected density functional calculations of molecular Rydberg states
,”
J. Chem. Phys.
139
,
194102
(
2013
).
50.
G.
Borghi
,
A.
Ferretti
,
N. L.
Nguyen
,
I.
Dabo
, and
N.
Marzari
, “
Koopmans-compliant functionals and their performance against reference molecular data
,”
Phys. Rev. B
90
,
075135
(
2014
); arXiv:1405.4635.
51.
H.
Gudmundsdóttir
,
Y.
Zhang
,
P. M.
Weber
, and
H.
Jónsson
, “
Self-interaction corrected density functional calculations of Rydberg states of molecular clusters: N,N-dimethylisopropylamine
,”
J. Chem. Phys.
141
,
234308
(
2014
).
52.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
, and
M. R.
Pederson
, “
Paradox of self-interaction correction: How can anything so right be so wrong?
,”
Adv. At., Mol., Opt. Phys.
64
,
1
(
2015
).
53.
X.
Cheng
,
Y.
Zhang
,
E.
Jónsson
,
H.
Jónsson
, and
P. M.
Weber
, “
Charge localization in a diamine cation provides a test of energy functionals and self-interaction correction
,”
Nat. Commun.
7
,
11013
(
2016
).
54.
Y.
Zhang
,
P. M.
Weber
, and
H.
Jónsson
, “
Self-interaction corrected functional calculations of a dipole-bound molecular anion
,”
J. Phys. Chem. Lett.
7
,
2068
(
2016
).
55.
S.
Schwalbe
,
T.
Hahn
,
S.
Liebing
,
K.
Trepte
, and
J.
Kortus
, “
Fermi–Löwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation
,”
J. Comput. Chem.
39
,
2463
(
2018
).
56.
G.
Borghi
,
C.-H.
Park
,
N. L.
Nguyen
,
A.
Ferretti
, and
N.
Marzari
, “
Variational minimization of orbital-density-dependent functionals
,”
Phys. Rev. B
91
,
155112
(
2015
).
57.
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
, “
The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules
,”
J. Chem. Phys.
112
,
7880
(
2000
).
58.
J.
Garza
,
R.
Vargas
,
J. A.
Nichols
, and
D. A.
Dixon
, “
Orbital energy analysis with respect to LDA and self-interaction corrected exchange-only potentials
,”
J. Chem. Phys.
114
,
639
(
2001
).
59.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
, “
Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory
,”
J. Chem. Phys.
115
,
26
(
2001
).
60.
S.
Patchkovskii
and
T.
Ziegler
, “
Improving “difficult” reaction barriers with self-interaction corrected density functional theory
,”
J. Chem. Phys.
116
,
7806
(
2002
).
61.
S.
Patchkovskii
and
T.
Ziegler
, “
Phosphorus NMR chemical shifts with self-interaction free, gradient-corrected DFT
,”
J. Phys. Chem. A
106
,
1088
(
2002
).
62.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Effect of the Perdew–Zunger self-interaction correction on the thermochemical performance of approximate density functionals
,”
J. Chem. Phys.
121
,
8187
(
2004
).
63.
O. A.
Vydrov
,
G. E.
Scuseria
,
J. P.
Perdew
,
A.
Ruzsinszky
, and
G. I.
Csonka
, “
Scaling down the Perdew–Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
124
,
094108
(
2006
).
64.
C. D.
Pemmaraju
,
T.
Archer
,
D.
Sánchez-Portal
, and
S.
Sanvito
, “
Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids
,”
Phys. Rev. B
75
,
045101
(
2007
).
65.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
The effect of the Perdew–Zunger self-interaction correction to density functionals on the energetics of small molecules
,”
J. Chem. Phys.
137
,
124102
(
2012
).
66.
Á.
Valdés
,
J.
Brillet
,
M.
Grätzel
,
H.
Gudmundsdóttir
,
H. A.
Hansen
,
H.
Jónsson
,
P.
Klüpfel
,
G.-J.
Kroes
,
F.
Le Formal
,
I. C.
Man
,
R. S.
Martins
,
J. K.
Nørskov
,
J.
Rossmeisl
,
K.
Sivula
,
A.
Vojvodic
, and
M.
Zäch
, “
Solar hydrogen production with semiconductor metal oxides: New directions in experiment and theory
,”
Phys. Chem. Chem. Phys.
14
,
49
(
2012
).
67.
H.
Gudmundsdóttir
,
E. Ö.
Jónsson
, and
H.
Jónsson
, “
Calculations of Al dopant in α-quartz using a variational implementation of the Perdew–Zunger self-interaction correction
,”
New J. Phys.
17
,
083006
(
2015
).
68.
S.
Lehtola
,
M.
Head-Gordon
, and
H.
Jónsson
, “
Complex orbitals, multiple local minima, and symmetry breaking in Perdew–Zunger self-interaction corrected density functional theory calculations
,”
J. Chem. Theory Comput.
12
,
3195
(
2016
).
69.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
, “
ERKALE—A flexible program package for X-ray properties of atoms and molecules
,”
J. Comput. Chem.
33
,
1572
(
2012
).
70.
S.
Lehtola
, ERKALE–HF/DFT from Hel, http://github.com/susilehtola/erkale,
2016
.
71.
T.
Hahn
,
S.
Liebing
,
J.
Kortus
, and
M. R.
Pederson
, “
Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation
,”
J. Chem. Phys.
143
,
224104
(
2015
); arXiv:1508.00745.
72.
M. R.
Pederson
,
T.
Baruah
,
D.-y.
Kao
, and
L.
Basurto
, “
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
,”
J. Chem. Phys.
144
,
164117
(
2016
).
73.
T.
Hahn
,
S.
Schwalbe
,
J.
Kortus
, and
M. R.
Pederson
, “
Symmetry breaking within Fermi–Löwdin orbital self-interaction corrected density functional theory
,”
J. Chem. Theory Comput.
13
,
5823
(
2017
).
74.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi–Löwdin orbitals: Optimized Fermi-orbital descriptors for Li–Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
75.
K.
Sharkas
,
L.
Li
,
K.
Trepte
,
K. P. K.
Withanage
,
R. P.
Joshi
,
R. R.
Zope
,
T.
Baruah
,
J. K.
Johnson
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Shrinking self-interaction errors with the Fermi–Löwdin orbital self-interaction-corrected density functional approximation
,”
J. Phys. Chem. A
122
,
9307
(
2018
).
76.
R. P.
Joshi
,
K.
Trepte
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
L.
Basurto
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Fermi–Löwdin orbital self-interaction correction to magnetic exchange couplings
,”
J. Chem. Phys.
149
,
164101
(
2018
).
77.
K. P. K.
Withanage
,
K.
Trepte
,
J. E.
Peralta
,
T.
Baruah
,
R.
Zope
, and
K. A.
Jackson
, “
On the question of the total energy in the Fermi–Löwdin Orbital self-interaction correction method
,”
J. Chem. Theory Comput.
14
,
4122
(
2018
).
78.
A. I.
Johnson
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
J. E.
Peralta
, and
K. A.
Jackson
, “
The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
,”
J. Chem. Phys.
151
,
174106
(
2019
).
79.
K. A.
Jackson
,
J. E.
Peralta
,
R. P.
Joshi
,
K. P.
Withanage
,
K.
Trepte
,
K.
Sharkas
, and
A. I.
Johnson
, “
Towards efficient density functional theory calculations without self-interaction: The Fermi–Löwdin orbital self-interaction correction
,”
J. Phys.: Conf. Ser.
1290
,
012002
(
2019
).
80.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
); arXiv:1911.08659.
81.
K. P. K.
Withanage
,
S.
Akter
,
C.
Shahi
,
R. P.
Joshi
,
C.
Diaz
,
Y.
Yamamoto
,
R.
Zope
,
T.
Baruah
,
J. P.
Perdew
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Self-interaction-free electric dipole polarizabilities for atoms and their ions using the Fermi–Löwdin self-interaction correction
,”
Phys. Rev. A
100
,
012505
(
2019
).
82.
B.
Santra
and
J. P.
Perdew
, “
Perdew–Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
,”
J. Chem. Phys.
150
,
174106
(
2019
); arXiv:1902.00117.
83.
K.
Trepte
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
D.-y.
Kao
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
K. P. K.
Withanage
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Analytic atomic gradients in the Fermi–Löwdin orbital self-interaction correction
,”
J. Comput. Chem.
40
,
820
(
2019
).
84.
S.
Schwalbe
,
K.
Trepte
,
L.
Fiedler
,
A. I.
Johnson
,
J.
Kraus
,
T.
Hahn
,
J. E.
Peralta
,
K. A.
Jackson
, and
J.
Kortus
, “
Interpretation and automatic generation of Fermi-orbital descriptors
,”
J. Comput. Chem.
40
,
2843
(
2019
).
85.
Y.
Yamamoto
,
C. M.
Diaz
,
L.
Basurto
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi–Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
,”
J. Chem. Phys.
151
,
154105
(
2019
).
86.
J.
Vargas
,
P.
Ufondu
,
T.
Baruah
,
Y.
Yamamoto
,
K. A.
Jackson
, and
R. R.
Zope
, “
Importance of self-interaction-error removal in density functional calculations on water cluster anions
,”
Phys. Chem. Chem. Phys.
22
,
3789
(
2020
).
87.
S.
Lehtola
,
E. Ö.
Jónsson
, and
H.
Jónsson
, “
Effect of complex-valued optimal orbitals on atomization energies with the Perdew–Zunger self-interaction correction to density functional theory
,”
J. Chem. Theory Comput.
12
,
4296
(
2016
).
88.
U.
Lundin
and
O.
Eriksson
, “
Novel method of self-interaction corrections in density functional calculations
,”
Int. J. Quantum Chem.
81
,
247
(
2001
).
89.
S.
Lehtola
,
F.
Blockhuys
, and
C.
Van Alsenoy
, “
An overview of self-consistent field calculations within finite basis sets
,”
Molecules
25
,
1218
(
2020
); arXiv:1912.12029 .
90.
J. G.
Harrison
,
R. A.
Heaton
, and
C. C.
Lin
, “
Self-interaction correction to the local density Hartree–Fock atomic calculations of excited and ground states
,”
J. Phys. B: At., Mol. Phys.
16
,
2079
(
1983
).
91.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Local-density Hartree–Fock theory of electronic states of molecules with self-interaction correction
,”
J. Chem. Phys.
80
,
1972
(
1984
).
92.
S.
Lehtola
and
H.
Jónsson
, “
Unitary optimization of localized molecular orbitals
,”
J. Chem. Theory Comput.
9
,
5365
(
2013
).
93.
S. F.
Boys
, “
Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
(
1960
).
94.
C.
Edmiston
and
K.
Ruedenberg
, “
Localized atomic and molecular orbitals
,”
Rev. Mod. Phys.
35
,
457
(
1963
).
95.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
(
1989
).
96.
S.
Lehtola
and
H.
Jónsson
, “
Pipek–Mezey orbital localization using various partial charge estimates
,”
J. Chem. Theory Comput.
10
,
642
(
2014
).
97.
W. L.
Luken
and
J. C.
Culberson
, “
Mobility of the Fermi hole in a single-determinant wavefunction
,”
Int. J. Quantum Chem.
22
,
265
(
1982
).
98.
W. L.
Luken
and
D. N.
Beratan
, “
Localized orbitals and the Fermi hole
,”
Theor. Chim. Acta
61
,
265
(
1982
).
99.
W. L.
Luken
, “
Properties of the Fermi hole in molecules
,”
Croat. Chem. Acta
57
(
6
),
1283
1294
(
1984
, available at https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=286249&lang=en.
100.
W. L.
Luken
and
J. C.
Culberson
, “
Localized orbitals based on the Fermi hole
,”
Theor. Chim. Acta
66
,
279
(
1984
).
101.
P. O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
(
1950
).
102.
G. N.
Lewis
, “
The atom and the molecule
,”
J. Am. Chem. Soc.
38
,
762
(
1916
).
103.
J. W.
Linnett
, “
Valence-bond structures: A new proposal
,”
Nature
187
,
859
(
1960
).
104.
J. W.
Linnett
, “
A modification of the Lewis–Langmuir octet rule
,”
J. Am. Chem. Soc.
83
,
2643
(
1961
).
105.
J. W.
Linnett
,
Electronic Structure of Molecules
(
Methuen & Co. Ltd.
,
London
,
1964
).
106.
W. F.
Luder
, “
Electronic structure of molecules (Linnett, JW)
,”
J. Chem. Educ.
43
,
55
(
1966
).
107.
J.
Kraus
, “
FLOSIC-DFT analysis of chemical bonding: Application to diatomic molecules
,” B.Sc. thesis,
TU Bergakademie Freiberg
,
2017
.
108.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
 et al., “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
109.
C. G.
Broyden
, “
The convergence of a class of double-rank minimization algorithms 1. General considerations
,”
IMA J. Appl. Math.
6
,
76
(
1970
).
110.
R.
Fletcher
, “
A new approach to variable metric algorithms
,”
Comput. J.
13
,
317
(
1970
).
111.
D.
Goldfarb
, “
A family of variable-metric methods derived by variational means
,”
Math. Comput.
24
,
23
(
1970
).
112.
D. F.
Shanno
, “
Conditioning of quasi-Newton methods for function minimization
,”
Math. Comput.
24
,
647
(
1970
).
113.
J.
Nocedal
, “
Updating quasi-Newton matrices with limited storage
,”
Math. Comput.
35
,
773
(
1980
).
114.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
(
1989
).
115.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
, “
A limited memory algorithm for bound constrained optimization
,”
SIAM J. Sci. Comput.
16
,
1190
(
1995
).
116.
C.
Zhu
,
R. H.
Byrd
,
P.
Lu
, and
J.
Nocedal
, “
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
,”
ACM Trans. Math. Software
23
,
550
(
1997
).
117.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
118.
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
, “
Self-interaction correction for energy band calculations: Application to LiCl
,”
Solid State Commun.
41
,
827
(
1982
).
119.
S.
Kim
,
J.
Chen
,
T.
Cheng
,
A.
Gindulyte
,
J.
He
,
S.
He
,
Q.
Li
,
B. A.
Shoemaker
,
P. A.
Thiessen
,
B.
Yu
et al., “
PubChem 2019 update: Improved access to chemical data
,”
Nucleic Acids Res.
47
,
D1102
(
2019
).
120.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
); arXiv:0711.0156.
121.
F.
Jensen
, “
Polarization consistent basis sets: Principles
,”
J. Chem. Phys.
115
,
9113
(
2001
).
122.
F.
Jensen
, “
Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit
,”
J. Chem. Phys.
116
,
7372
(
2002
).
123.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
,
S.
Lehtola
,
N. K.
Nepal
,
H.
Myneni
,
B.
Neupane
,
S.
Adhikari
,
A.
Ruzsinszky
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
, and
J. P.
Perdew
, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
124.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
125.
E. Ö.
Jónsson
,
S.
Lehtola
, and
H.
Jónsson
, “
Towards an optimal gradient-dependent energy functional of the PZ-SIC form
,”
Proc. Comput. Sci.
51
,
1858
(
2015
).
126.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
127.
A.
Karton
,
N.
Sylvetsky
, and
J. M. L.
Martin
, “
W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods
,”
J. Comput. Chem.
38
,
2063
(
2017
).
128.
E.
Cancès
,
Y.
Maday
, and
B.
Stamm
, “
Domain decomposition for implicit solvation models
,”
J. Chem. Phys.
139
,
054111
(
2013
).
129.
F.
Lipparini
,
B.
Stamm
,
E.
Cancès
,
Y.
Maday
, and
B.
Mennucci
, “
Fast domain decomposition algorithm for continuum solvation models: Energy and first derivatives
,”
J. Chem. Theory Comput.
9
,
3637
(
2013
).
130.
F.
Lipparini
,
G.
Scalmani
,
L.
Lagardère
,
B.
Stamm
,
E.
Cancès
,
Y.
Maday
,
J.-P.
Piquemal
,
M. J.
Frisch
, and
B.
Mennucci
, “
Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy
,”
J. Chem. Phys.
141
,
184108
(
2014
).
131.
B.
Stamm
,
E.
Cancès
,
F.
Lipparini
, and
Y.
Maday
, “
A new discretization for the polarizable continuum model within the domain decomposition paradigm
,”
J. Chem. Phys.
144
,
054101
(
2016
).
132.
F.
Lipparini
and
B.
Mennucci
, “
Perspective: Polarizable continuum models for quantum-mechanical descriptions
,”
J. Chem. Phys.
144
,
160901
(
2016
).
133.
C.
Pisani
,
R.
Dovesi
, and
C.
Roetti
, in
Hartree–Fock Ab Initio Treatment of Crystalline Systems
, Lecture Notes in Chemistry Vol. 48 (
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1988
).
134.
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
, “
Self-interaction correction for density-functional theory of electronic energy bands of solids
,”
Phys. Rev. B
28
,
5992
(
1983
).
135.
R. A.
Heaton
and
C. C.
Lin
, “
Self-interaction-correction theory for density functional calculations of electronic energy bands for the lithium chloride crystal
,”
J. Phys. C: Solid State Phys.
17
,
1853
(
1984
).
136.
A.
Svane
and
O.
Gunnarsson
, “
Anti-ferromagnetic moment formation in the self-interaction-corrected density functional formalism
,”
Europhys. Lett.
7
,
171
(
1988
).
137.
A.
Svane
and
O.
Gunnarsson
, “
Localization in the self-interaction-corrected density-functional formalism
,”
Phys. Rev. B
37
,
9919
(
1988
).
138.
S. C.
Erwin
and
C. C.
Lin
, “
The self-interaction-corrected electronic band structure of six alkali fluoride and chloride crystals
,”
J. Phys. C: Solid State Phys.
21
,
4285
(
1988
).
139.
Z.
Szotek
,
W. M.
Temmerman
, and
H.
Winter
, “
On the self-interaction correction of localized bands: Application to rare gas solids
,”
Solid State Commun.
74
,
1031
(
1990
).
140.
Z.
Szotek
,
W. M.
Temmerman
, and
H.
Winter
, “
On the self-interaction correction of localized bands: Application to the 4p semi-core states in Y
,”
Physica B
165-166
,
275
(
1990
).
141.
A.
Svane
and
O.
Gunnarsson
, “
Hydrogen solid in self-interaction-corrected local-spin-density approximation
,”
Solid State Commun.
76
,
851
(
1990
).
142.
A.
Svane
and
O.
Gunnarsson
, “
Transition-metal oxides in the self-interaction-corrected density-functional formalism
,”
Phys. Rev. Lett.
65
,
1148
(
1990
).
143.
A.
Svane
, “
Electronic structure of La2CuO4 in the self-interaction-corrected density-functional formalism
,”
Phys. Rev. Lett.
68
,
1900
(
1992
).
144.
M. M.
Rieger
and
P.
Vogl
, “
Self-interaction corrections in semiconductors
,”
Phys. Rev. B
52
,
16567
(
1995
).
145.
D.
Vogel
,
P.
Krüger
, and
J.
Pollmann
, “
Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials
,”
Phys. Rev. B
52
,
R14316
(
1995
).
146.
M.
Arai
and
T.
Fujiwara
, “
Electronic structures of transition-metal mono-oxides in the self-interaction-corrected local-spin-density approximation
,”
Phys. Rev. B
51
,
1477
(
1995
).
147.
D.
Vogel
,
P.
Krüger
, and
J.
Pollmann
, “
Self-interaction and relaxation-corrected pseudopotentials for II–VI semiconductors
,”
Phys. Rev. B
54
,
5495
(
1996
).
148.
A.
Svane
, “
Electronic structure of cerium in the self-interaction-corrected local-spin-density approximation
,”
Phys. Rev. B
53
,
4275
(
1996
).
149.
A.
Svane
,
W. M.
Temmerman
,
Z.
Szotek
,
J.
Laegsgaard
, and
H.
Winter
, “
Self-interaction-corrected local-spin-density calculations for rare earth materials
,”
Int. J. Quantum Chem.
77
,
799
(
2000
).
150.
A.
Filippetti
and
N. A.
Spaldin
, “
Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems
,”
Phys. Rev. B
67
,
125109
(
2003
); arXiv:cond-mat/0303042.
151.
E.
Bylaska
,
K.
Tsemekhman
, and
H.
Jónsson
, “
Self-consistent self-interaction corrected DFT: The method and applications to extended and confined systems
,” in
APS Meeting Abstracts
,
2004
.
152.
M.
Lüders
,
A.
Ernst
,
M.
Däne
,
Z.
Szotek
,
A.
Svane
,
D.
Ködderitzsch
,
W.
Hergert
,
B. L.
Györffy
, and
W. M.
Temmerman
, “
Self-interaction correction in multiple scattering theory
,”
Phys. Rev. B
71
,
205109
(
2005
).
153.
E. J.
Bylaska
,
K.
Tsemekhman
, and
F.
Gao
, “
New development of self-interaction corrected DFT for extended systems applied to the calculation of native defects in 3C–SiC
,”
Phys. Scr.
T124
,
86
(
2006
).
154.
B.
Hourahine
,
S.
Sanna
,
B.
Aradi
,
C.
Köhler
,
T.
Niehaus
, and
T.
Frauenheim
, “
Self-interaction and strong correlation in DFTB
,”
J. Phys. Chem. A
111
,
5671
(
2007
).
155.
M.
Stengel
and
N. A.
Spaldin
, “
Self-interaction correction with Wannier functions
,”
Phys. Rev. B
77
,
155106
(
2008
).
156.
M.
Däne
,
M.
Lüders
,
A.
Ernst
,
D.
Ködderitzsch
,
W. M.
Temmerman
,
Z.
Szotek
, and
W.
Hergert
, “
Self-interaction correction in multiple scattering theory: Application to transition metal oxides
,”
J. Phys.: Condens. Matter
21
,
045604
(
2009
).
157.
N. L.
Nguyen
,
N.
Colonna
,
A.
Ferretti
, and
N.
Marzari
, “
Koopmans-compliant spectral functionals for extended systems
,”
Phys. Rev. X
8
,
021051
(
2018
); arXiv:1708.08518.
158.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
(
1997
); arXiv:cond-mat/9707145.
159.
E. Ö.
Jónsson
,
S.
Lehtola
,
M.
Puska
, and
H.
Jónsson
, “
Theory and applications of generalized Pipek–Mezey Wannier functions
,”
J. Chem. Theory Comput.
13
,
460
(
2017
); arXiv:1608.06396.
160.
J. T.
Su
and
W. A.
Goddard
, “
Excited electron dynamics modeling of warm dense matter
,”
Phys. Rev. Lett.
99
,
185003
(
2007
).
161.
K.
Trepte
,
S.
Schwalbe
, and
G.
Seifert
, “
Electronic and magnetic properties of DUT-8 (Ni)
,”
Phys. Chem. Chem. Phys.
17
,
17122
(
2015
).
162.
S.
Schwalbe
,
K.
Trepte
,
G.
Seifert
, and
J.
Kortus
, “
Screening for high-spin metal organic frameworks (MOFs): Density functional theory study on DUT-8(M1, M2) (with Mi = V, …, Cu)
,”
Phys. Chem. Chem. Phys.
18
,
8075
(
2016
).
163.
K.
Trepte
,
J.
Schaber
,
S.
Schwalbe
,
F.
Drache
,
I.
Senkovska
,
S.
Kaskel
,
J.
Kortus
,
E.
Brunner
, and
G.
Seifert
, “
The origin of the measured chemical shift of 129Xe in UiO-66 and UiO-67 revealed by DFT investigations
,”
Phys. Chem. Chem. Phys.
19
,
10020
(
2017
).
164.
K.
Trepte
,
S.
Schwalbe
,
J.
Schaber
,
S.
Krause
,
I.
Senkovska
,
S.
Kaskel
,
E.
Brunner
,
J.
Kortus
, and
G.
Seifert
, “
Theoretical and experimental investigations of 129Xe NMR chemical shift isotherms in metal-organic frameworks
,”
Phys. Chem. Chem. Phys.
20
,
25039
(
2018
).
165.
K.
Trepte
and
S.
Schwalbe
, “
Systematic analysis of porosities in metal-organic frameworks
,” ChemRxiv: 10060331 (
2020
).
You do not currently have access to this content.