Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications; however, progress toward this end has been impeded by the lack of a first principles approach that quantifies light–matter interactions in these systems, which would allow the formulation of molecular design rules. Here, we present a theoretical framework that combines first principles calculations for excitons with classical electrodynamics in order to quantify light–matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical toward strong exciton–photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light–matter coupling over a range of frequencies. Our approach opens the way toward a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton–photon interaction would require accounting for all sources of disorder self-consistently.

1.
S. I.
Pekar
, “
The theory of electromagnetic waves in a crystal in which excitons are produced
,”
Sov. J. Exp. Theor. Phys.
6
(
4
),
785
(
1958
).
2.
S. I.
Pekar
, “
Identification of excitons with light waves in a crystal
,”
Sov. J. Exp. Theor. Phys.
11
(
6
),
1286
(
1960
).
3.
J. J.
Hopfield
, “
Theory of the contribution of excitons to the complex dielectric constant of crystals
,”
Phys. Rev.
112
(
5
),
1555
1567
(
1958
).
4.
H.
Kalt
and
C. F.
Klingshirn
,
Semiconductor Optics 1
, 5th ed. (
Springer
,
2019
), Chap. 8.
5.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
, “
White organic light-emitting diodes with fluorescent tube efficiency
,”
Nature
459
(
7244
),
234
238
(
2009
).
6.
L.
Meng
,
Y.
Zhang
,
X.
Wan
,
C.
Li
,
X.
Zhang
,
Y.
Wang
,
X.
Ke
,
Z.
Xiao
,
L.
Ding
,
R.
Xia
,
H. L.
Yip
,
Y.
Cao
, and
Y.
Chen
, “
Organic and solution-processed tandem solar cells with 17.3% efficiency
,”
Science
361
(
6407
),
1094
1098
(
2018
).
7.
A.
Strashko
,
P.
Kirton
, and
J.
Keeling
, “
Organic polariton lasing and the weak to strong coupling crossover
,”
Phys. Rev. Lett.
121
(
19
),
193601
(
2018
).
8.
S.
Kéna-Cohen
and
S. R.
Forrest
, “
Room-temperature polariton lasing in an organic single-crystal microcavity
,”
Nat. Photonics
4
(
6
),
371
375
(
2010
).
9.
M.
Knupfer
, “
Exciton binding energies in organic semiconductors
,”
Appl. Phys. A
77
(
5
),
623
626
(
2003
).
10.
A.
Köhler
and
H.
Bässler
, “
Triplet states in organic semiconductors
,”
Mater. Sci. Eng. R: Rep.
66
(
4-6
),
71
109
(
2009
).
11.
D.
Beljonne
,
H.
Yamagata
,
J. L.
Brédas
,
F. C.
Spano
, and
Y.
Olivier
, “
Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene
,”
Phys. Rev. Lett.
110
(
22
),
226402
(
2013
).
12.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange
,”
J. Chem. Phys.
138
(
11
),
114103
(
2013
).
13.
S. R.
Yost
,
J.
Lee
,
M. W. B.
Wilson
,
T.
Wu
,
D. P.
McMahon
,
R. R.
Parkhurst
,
N. J.
Thompson
,
D. N.
Congreve
,
A.
Rao
,
K.
Johnson
,
M. Y.
Sfeir
,
M. G.
Bawendi
,
T. M.
Swager
,
R. H.
Friend
,
M. A.
Baldo
, and
T.
Van Voorhis
, “
A transferable model for singlet-fission kinetics
,”
Nat. Chem.
6
(
6
),
492
497
(
2014
).
14.
P. B.
Coto
,
S.
Sharifzadeh
,
J. B.
Neaton
, and
M.
Thoss
, “
Low-lying electronic excited states of pentacene oligomers: A comparative electronic structure study in the context of singlet fission
,”
J. Chem. Theory Comput.
11
(
1
),
147
156
(
2015
).
15.
M.
Litinskaya
,
P.
Reineker
, and
V. M.
Agranovich
, “
Exciton-polaritons in organic microcavities
,”
J. Lumin.
119-120
,
277
282
(
2006
).
16.
D. G.
Lidzey
,
D. D. C.
Bradley
,
M. S.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D. M.
Whittaker
, “
Strong exciton-photon coupling in an organic semiconductor microcavity
,”
Nature
395
(
6697
),
53
55
(
1998
).
17.
D.
Polak
,
R.
Jayaprakash
,
T. P.
Lyons
,
L. Á.
Martínez-Martínez
,
A.
Leventis
,
K. J.
Fallon
,
H.
Coulthard
,
D. G.
Bossanyi
,
K.
Georgiou
,
A. J.
Petty
 II
,
J.
Anthony
,
H.
Bronstein
,
J.
Yuen-Zhou
,
A. I.
Tartakovskii
,
J.
Clark
, and
A. J.
Musser
, “
Manipulating molecules with strong coupling: Harvesting triplet excitons in organic exciton microcavities
,”
Chem. Sci.
11
(
2
),
343
354
(
2020
).
18.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
, “
Cavity polaritons in microcavities containing disordered organic semiconductors
,”
Phys. Rev. B
67
(
8
),
085311
(
2003
).
19.
A.
Canaguier-Durand
,
C.
Genet
,
A.
Lambrecht
,
T. W.
Ebbesen
, and
S.
Reynaud
, “
Non-Markovian polariton dynamics in organic strong coupling
,”
Eur. Phys. J. D
69
(
1
),
24
(
2015
).
20.
T. W.
Ebbesen
, “
Hybrid light-matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
(
11
),
2403
2412
(
2016
).
21.
A.
Troisi
,
G.
Orlandi
, and
J. E.
Anthony
, “
Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units
,”
Chem. Mater.
17
(
20
),
5024
5031
(
2005
).
22.
A.
Troisi
and
G.
Orlandi
, “
Dynamics of the intermolecular transfer integral in crystalline organic semiconductors
,”
J. Phys. Chem. A
110
(
11
),
4065
4070
(
2006
).
23.
P.
Cudazzo
,
F.
Sottile
,
A.
Rubio
, and
M.
Gatti
, “
Exciton dispersion in molecular solids
,”
J. Phys.: Condens. Matter
27
(
11
),
113204
(
2015
).
24.
S.
Refaely-Abramson
,
F. H.
Da Jornada
,
S. G.
Louie
, and
J. B.
Neaton
, “
Origins of singlet fission in solid pentacene from an ab initio Green’s function approach
,”
Phys. Rev. Lett.
119
(
26
),
267401
(
2017
).
25.
A. M.
Alvertis
,
R.
Pandya
,
L. A.
Muscarella
,
N.
Sawhney
,
M.
Nguyen
,
B.
Ehrler
,
A.
Rao
,
R. H.
Friend
,
A. W.
Chin
, and
B.
Monserrat
, “
The impact of exciton delocalization on exciton-vibration interactions in organic semiconductors
,” arXiv:2006.03604,
2020
.
26.
R. F.
Mahrt
and
H.
Bässler
, “
Light and heavy excitonic polarons in conjugated polymers
,”
Synth. Met.
45
(
1
),
107
117
(
1991
).
27.
F. C.
Spano
, “
The spectral signatures of Frenkel polarons in H- and J-aggregates
,”
Acc. Chem. Res.
43
(
3
),
429
439
(
2010
).
28.
H.
Yamagata
and
F. C.
Spano
, “
Vibronic coupling in quantum wires: Applications to polydiacetylene
,”
J. Chem. Phys.
135
(
5
),
054906
(
2011
).
29.
N.
Somaschi
,
L.
Mouchliadis
,
D.
Coles
,
I. E.
Perakis
,
D. G.
Lidzey
,
P. G.
Lagoudakis
, and
P. G.
Savvidis
, “
Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities
,”
Appl. Phys. Lett.
99
(
14
),
143303
(
2011
).
30.
N.
Wu
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields
,”
Phys. Rev. B
94
(
19
),
195409
(
2016
).
31.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
W. C.
Tsoi
,
A. M.
Adawi
,
J.-S.
Kim
, and
D. G.
Lidzey
, “
Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities
,”
Adv. Funct. Mater.
21
(
19
),
3691
3696
(
2011
).
32.
J.
Del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of polaron-polaritons in organic microcavities
,”
Phys. Rev. B
98
(
16
),
165416
(
2018
).
33.
J.
Del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of non-Markovian dynamics in organic polaritons
,”
Phys. Rev. Lett.
121
(
22
),
227401
(
2018
).
34.
H.
Haug
and
S. W.
Koch
,
Quantum Theory of the Optical and Electronic Properties of Semiconductors
, 4th ed. (
World Scientific
,
2004
), Chap. 11.
35.
F. A. Y. N.
Schröder
,
D. H. P.
Turban
,
A. J.
Musser
,
N. D. M.
Hine
, and
A. W.
Chin
, “
Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
,”
Nat. Commun.
10
(
1
),
1062
(
2019
).
36.
A. M.
Alvertis
,
F. A. Y. N.
Schröder
, and
A. W.
Chin
, “
Non-equilibrium relaxation of hot states in organic semiconductors: Impact of mode-selective excitation on charge transfer
,”
J. Chem. Phys.
151
(
8
),
084104
(
2019
).
37.
H.
Lars
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
(
17
),
796
823
(
1965
).
38.
M.
Rohlfing
and
S. G.
Louie
, “
Electron-hole excitations in semiconductors and insulators
,”
Phys. Rev. Lett.
81
(
11
),
2312
2315
(
1998
).
39.
M.
Rohlfing
and
S. G.
Louie
, “
Electron-hole excitations and optical spectra from first principles
,”
Phys. Rev. B
62
(
8
),
4927
4944
(
2000
).
40.
M.
Rohlfing
and
S. G.
Louie
, “
Optical excitations in conjugated polymers
,”
Phys. Rev. Lett.
82
(
9
),
1959
(
1999
).
41.
K.
Kunc
and
R. M.
Martin
, “
Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties
,”
Phys. Rev. Lett.
48
(
6
),
406
409
(
1982
).
42.
B.
Monserrat
, “
Electron – phonon coupling from finite differences
,”
J. Phys.: Condens. Matter
30
,
083001
(
2018
).
43.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York, London
,
1975
).
44.
S.
Dai
,
Z.
Fei
,
Q.
Ma
,
A. S.
Rodin
,
M.
Wagner
,
A. S.
McLeod
,
M. K.
Liu
,
W.
Gannett
,
W.
Regan
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Thiemens
,
G.
Dominguez
,
A. H. C.
Neto
,
A.
Zettl
,
F.
Keilmann
,
P.
Jarillo-Herrero
,
M. M.
Fogler
, and
D. N.
Basov
, “
Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride
,”
Science
343
(
6175
),
1125
1129
(
2014
).
45.
A. V.
Zayats
,
I. I.
Smolyaninov
, and
A. A.
Maradudin
, “
Nano-optics of surface plasmon polaritons
,”
Phys. Rep.
408
(
3-4
),
131
314
(
2005
).
46.
J.
Lagois
and
B.
Fischer
, “
Chapter 2 - surface exciton polaritons from an experimental viewpoint
,” in
Surface Polaritons, Modern Problems in Condensed Matter Sciences
, edited by
D. L.
Mills
and
V. M.
Agranovich
(
North Holland Publishing Company: Sole distributors for the USA and Canada, Elsevier Science Publishing Company
,
Amsterdam, New York
,
1982
).
47.
M.
Schott
and
G.
Wegner
, “
Chapter III-1 - basic structural and electronic properties of polydiacetylenes
, in
Nonlinear Optical Properties of Organic Molecules and Crystals
, edited by
D. S.
Chemla
and
J.
Zyss
(
Academic Press
,
1987
), pp.
3
49
.
48.
P.
Spinat
,
C.
Brouty
,
A.
Whuler
, and
M. C.
Sichère
, “
Determination structurale a 205 K du poly {bis [(p-bromophenylcarbamoyloxy)-4 butyl] - 1, 2 butene-1 yne-3 ylene}, (C26H26Br2N204) n
,”
Acta Crystallogr.
41
,
1452
1455
(
1985
).
49.
V.
Enkelmann
and
G.
Schleier
, “
Poly[1,2-bis(diphenylaminomethyl)-1-buten-3-ynylene]
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
36
(
8
),
1954
1956
(
1980
).
50.
T.
Barisien
,
L.
Legrand
,
G.
Weiser
,
J.
Deschamps
,
M.
Balog
,
B.
Boury
,
S. G.
Dutremez
, and
M.
Schott
, “
Exciton spectroscopy of red polydiacetylene chains in single crystals
,”
Chem. Phys. Lett.
444
(
4-6
),
309
313
(
2007
).
51.
M.
Schott
, “
The colors of polydiacetylenes: A commentary
,”
J. Phys. Chem. B
110
(
32
),
15864
15868
(
2006
).
52.
M. R.
Philpott
, “
Optical reflection spectroscopy of organic solids
,”
Annu. Rev. Phys. Chem.
31
,
97
129
(
1980
).
53.
S. C. J.
Meskers
and
G.
Lakhwani
, “
Reflection of light by anisotropic molecular crystals including exciton-polaritons and spatial dispersion
,”
J. Chem. Phys.
145
(
19
),
194703
(
2016
).
54.
M.
Tristani-Kendra
,
C. J.
Eckhardt
,
J.
Bernstein
, and
E.
Goldstein
, “
Strong coupling in the optical spectra of polymorphs of a squarylium dye
,”
Chem. Phys. Lett.
98
(
1
),
57
61
(
1983
).
55.
J.-S.
Filhol
,
J.
Deschamps
,
S. G.
Dutremez
,
B.
Boury
,
T.
Barisien
,
L.
Legrand
, and
M.
Schott
, “
Polymorphs and colors of polydiacetylenes: A first principles study
,”
J. Am. Chem. Soc.
131
(
20
),
6976
6988
(
2009
).
56.
A.
Horvath
,
G.
Weiser
,
C.
Lapersonne-Meyer
,
M.
Schott
, and
S.
Spagnoli
, “
Wannier excitons and Franz-Keldysh effect of polydiacetylene chains diluted in their single crystal monomer matrix
,”
Phys. Rev. B
53
(
20
),
13507
13514
(
1996
).
57.
F.
Wudl
and
S. P.
Bitler
, “
Synthesis and some properties of poly(diacety1ene) (polyenyne) oligomers
,”
J. Am. Chem. Soc.
108
(
15
),
4685
4687
(
1986
).
58.
F. C.
Spano
, “
Absorption and emission in oligo-phenylene vinylene nanoaggregates: The role of disorder and structural defects
,”
J. Chem. Phys.
116
(
13
),
5877
5891
(
2002
).
59.
F. C.
Spano
and
H.
Yamagata
, “
Vibronic coupling in J-aggregates and beyond: A direct means of determining the exciton coherence length from the photoluminescence spectrum
,”
J. Phys. Chem. B
115
(
18
),
5133
5143
(
2011
).
60.
S.
Kivelson
and
A. J.
Heeger
, “
First-order transition to a metallic state in polyacetylene: A strong-coupling polaronic metal
,”
Phys. Rev. Lett.
55
(
3
),
308
311
(
1985
).
61.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
De Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
(
39
),
395502
(
2009
).
62.
D.
Sangalli
,
A.
Ferretti
,
H.
Miranda
,
C.
Attaccalite
,
I.
Marri
,
E.
Cannuccia
,
P.
Melo
,
M.
Marsili
,
F.
Paleari
,
A.
Marrazzo
,
G.
Prandini
,
P.
Bonfà
,
M. O.
Atambo
,
F.
Affinito
,
M.
Palummo
,
A.
Molina-Sánchez
,
C.
Hogan
,
M.
Grüning
,
D.
Varsano
, and
A.
Marini
, “
Many-body perturbation theory calculations using the yambo code
,”
J. Phys.: Condens. Matter
31
(
32
),
325902
(
2019
).
63.
E.
Mostaani
,
B.
Monserrat
,
N. D.
Drummond
, and
C. J.
Lambert
, “
Quasiparticle and excitonic gaps of one-dimensional carbon chains
,”
Phys. Chem. Chem. Phys.
18
(
22
),
14810
14821
(
2016
).
You do not currently have access to this content.