In 2020, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worldwide and caused the coronavirus disease 2019 (COVID-19). Spike (S) glycoproteins on the viral membrane bind to ACE2 receptors on the host cell membrane and initiate fusion, and S protein is currently among the primary drug target to inhibit viral entry. The S protein can be in a receptor inaccessible (closed) or accessible (open) state based on down and up positions of its receptor-binding domain (RBD), respectively. However, conformational dynamics and the transition pathway between closed to open states remain unexplored. Here, we performed all-atom molecular dynamics (MD) simulations starting from closed and open states of the S protein trimer in the presence of explicit water and ions. MD simulations showed that RBD forms a higher number of interdomain interactions and exhibits lower mobility in its down position than its up position. MD simulations starting from intermediate conformations between the open and closed states indicated that RBD switches to the up position through a semi-open intermediate that potentially reduces the free energy barrier between the closed and open states. Free energy landscapes were constructed, and a minimum energy pathway connecting the closed and open states was proposed. Because RBD-ACE2 binding is compatible with the semi-open state, but not with the closed state of the S protein, we propose that the formation of the intermediate state is a prerequisite for the host cell recognition.

1.
Beckstein
,
O.
,
Denning
,
E. J.
,
Perilla
,
J. R.
, and
Woolf
,
T. B.
, “
Zipping and unzipping of adenylate kinase: Atomistic insights into the ensemble of open ↔ closed transitions
,”
J. Mol. Biol.
394
(
1
),
160
176
(
2009
).
2.
Belouzard
,
S.
,
Millet
,
J. K.
,
Licitra
,
B. N.
, and
Whittaker
,
G. R.
, “
Mechanisms of coronavirus cell entry mediated by the viral spike protein
,”
Viruses
4
(
6
),
1011
1033
(
2012
).
3.
Best
,
R. B.
,
Zhu
,
X.
,
Shim
,
J.
,
Lopes
,
P. E. M.
,
Mittal
,
J.
,
Feig
,
M.
, and
MacKerell
, Jr.,
A. D.
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles
,”
J. Chem. Theory Comput.
8
(
9
),
3257
3273
(
2012
).
4.
Bosch
,
B. J.
,
van der Zee
,
R.
,
de Haan
,
C. A. M.
, and
Rottier
,
P. J. M.
, “
The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex
,”
J. Virol.
77
(
16
),
8801
8811
(
2003
).
5.
Bullough
,
P. A.
,
Hughson
,
F. M.
,
Skehel
,
J. J.
, and
Wiley
,
D. C.
, “
Structure of influenza haemagglutinin at the pH of membrane fusion
,”
Nature
371
(
6492
),
37
43
(
1994
).
6.
Coutard
,
B.
,
Valle
,
C.
,
de Lamballerie
,
X.
,
Canard
,
B.
,
Seidah
,
N. G.
, and
Decroly
,
E.
, “
The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
,”
Antiviral Res.
176
,
104742
(
2020
).
7.
Durrant
,
J. D.
and
McCammon
,
J. A.
, “
HBonanza: A computer algorithm for molecular-dynamics-trajectory hydrogen-bond analysis
,”
J. Mol. Graph. Model.
31
,
5
9
(
2011
).
8.
Eskici
,
G.
and
Gur
,
M.
, “
Computational design of new peptide inhibitors for amyloid beta (Aβ) aggregation in Alzheimer’s disease: application of a novel methodology
,”
Plos one
8
(
6
),
e66178
(
2013
).
9.
Gallagher
,
T. M.
and
Buchmeier
,
M. J.
, “
Coronavirus spike proteins in viral entry and pathogenesis
,”
Virology
279
(
2
),
371
374
(
2001
).
10.
Gur
,
M.
,
Blackburn
,
E. A.
,
Ning
,
J.
,
Narayan
,
V.
,
Ball
,
K. L.
,
Walkinshaw
,
M. D.
, and
Erman
,
B.
, “
Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties
,”
J. Chem. Phys.
148
(
14
),
145101
(
2018
).
11.
Gur
,
M.
,
Zomot
,
E.
, and
Bahar
,
I.
, “
Global motions exhibited by proteins in micro-to milliseconds simulations concur with anisotropic network model predictions
,”
J. Chem. Phys.
139
(
12
),
121912
(
2013
).
12.
Han
,
Y.
and
Yang
,
H.
, “
The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective
,”
J. Med. Virol.
92
,
639
(
2020
).
13.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
(
1
),
33
38
(
1996
).
14.
Huo
,
J.
,
Le Bas
,
A.
,
Ruza
,
R. R.
,
Duyvesteyn
,
H. M. E.
,
Mikolajek
,
H.
,
Malinauskas
,
T.
,
Tan
,
T. K.
,
Rijal
,
P.
,
Dumoux
,
M.
,
Ward
,
P. N.
,
Ren
,
J.
,
Zhou
,
D.
,
Harrison
,
P. J.
,
Weckener
,
M.
,
Clare
,
D. K.
,
Vogirala
,
V. K.
,
Radecke
,
J.
,
Moynié
,
L.
,
Zhao
,
Y.
,
Gilbert-Jaramillo
,
J.
,
Knight
,
M. L.
,
Tree
,
J. A.
,
Buttigieg
,
K. R.
,
Coombes
,
N.
,
Elmore
,
M. J.
,
Carroll
,
M. W.
,
Carrique
,
L.
,
Shah
,
P. N. M.
,
James
,
W.
,
Townsend
,
A. R.
,
Stuart
,
D. I.
,
Owens
,
R. J.
, and
Naismith
,
J. H.
, “
Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2
,”
Nat. Struct. Mol. Biol.
1
9
(published online 2020).
15.
Isralewitz
,
B.
,
Gao
,
M.
, and
Schulten
,
K.
, “
Steered molecular dynamics and mechanical functions of proteins
,”
Curr. Opin. Struct. Biol.
11
(
2
),
224
230
(
2001
).
16.
Izrailev
,
S.
,
Crofts
,
A. R.
,
Berry
,
E. A.
, and
Schulten
,
K.
, “
Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex
,”
Biophys. J.
77
(
4
),
1753
1768
(
1999
).
17.
Jiang
,
S.
,
Du
,
L.
, and
Shi
,
Z.
, “
An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies
,”
Emerg. Microb. Infect.
9
(
1
),
275
277
(
2020
).
18.
Kirchdoerfer
,
R. N.
,
Wang
,
N.
,
Pallesen
,
J.
,
Wrapp
,
D.
,
Turner
,
H. L.
,
Cottrell
,
C. A.
,
Corbett
,
K. S.
,
Graham
,
B. S.
,
McLellan
,
J. S.
, and
Ward
,
A. B.
, “
Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
,”
Sci. Rep.
8
(
1
),
1
11
(
2018
).
19.
Lan
,
J.
,
Ge
,
J.
,
Yu
,
J.
,
Shan
,
S.
,
Zhou
,
H.
,
Fan
,
S.
,
Zhang
,
Q.
,
Shi
,
X.
,
Wang
,
Q.
, and
Zhang
,
L.
, “
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
,”
Nature
581
(
7807
),
215
220
(
2020
).
20.
Letko
,
M.
,
Marzi
,
A.
, and
Munster
,
V.
, “
Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
,”
Nat. Microbiol.
5
,
562
569
(
2020
).
21.
Li
,
W.
,
Moore
,
M. J.
,
Vasilieva
,
N.
,
Sui
,
J.
,
Wong
,
S. K.
,
Berne
,
M. A.
,
Somasundaran
,
M.
,
Sullivan
,
J. L.
,
Luzuriaga
,
K.
,
Greenough
,
T. C.
,
Choe
,
H.
, and
Farzan
,
M.
, “
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
,”
Nature
426
(
6965
),
450
454
(
2003
).
22.
Lu
,
H.
,
Isralewitz
,
B.
,
Krammer
,
A.
,
Vogel
,
V.
, and
Schulten
,
K.
, “
Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation
,”
Biophys. J.
75
(
2
),
662
671
(
1998
).
23.
Lu
,
R.
,
Zhao
,
X.
,
Li
,
J.
,
Niu
,
P.
,
Yang
,
B.
,
Wu
,
H.
,
Wang
,
W.
,
Song
,
H.
,
Huang
,
B.
,
Zhu
,
N.
,
Bi
,
Y.
,
Ma
,
X.
,
Zhan
,
F.
,
Wang
,
L.
,
Hu
,
T.
,
Zhou
,
H.
,
Hu
,
Z.
,
Zhou
,
W.
,
Zhao
,
L.
,
Chen
,
J.
,
Meng
,
Y.
,
Wang
,
J.
,
Lin
,
Y.
,
Yuan
,
J.
,
Xie
,
Z.
,
Ma
,
J.
,
Liu
,
W. J.
,
Wang
,
D.
,
Xu
,
W.
,
Holmes
,
E. C.
,
Gao
,
G. F.
,
Wu
,
G.
,
Chen
,
W.
,
Shi
,
W.
, and
Tan
,
W.
, “
Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding
,”
Lancet
395
(
10224
),
565
574
(
2020
).
24.
O’Leary
,
N. A.
,
Wright
,
M. W.
,
Brister
,
J. R.
,
Ciufo
,
S.
,
Haddad
,
D.
,
McVeigh
,
R.
,
Rajput
,
B.
,
Robbertse
,
B.
,
Smith-White
,
B.
,
Ako-Adjei
,
D.
,
Astashyn
,
A.
,
Badretdin
,
A.
,
Bao
,
Y.
,
Blinkova
,
O.
,
Brover
,
V.
,
Chetvernin
,
V.
,
Choi
,
J.
,
Cox
,
E.
,
Ermolaeva
,
O.
,
Farrell
,
C. M.
,
Goldfarb
,
T.
,
Gupta
,
T.
,
Haft
,
D.
,
Hatcher
,
E.
,
Hlavina
,
W.
,
Joardar
,
V. S.
,
Kodali
,
V. K.
,
Li
,
W.
,
Maglott
,
D.
,
Masterson
,
P.
,
McGarvey
,
K. M.
,
Murphy
,
M. R.
,
O’Neill
,
K.
,
Pujar
,
S.
,
Rangwala
,
S. H.
,
Rausch
,
D.
,
Riddick
,
L. D.
,
Schoch
,
C.
,
Shkeda
,
A.
,
Storz
,
S. S.
,
Sun
,
H.
,
Thibaud-Nissen
,
F.
,
Tolstoy
,
I.
,
Tully
,
R. E.
,
Vatsan
,
A. R.
,
Wallin
,
C.
,
Webb
,
D.
,
Wu
,
W.
,
Landrum
,
M. J.
,
Kimchi
,
A.
,
Tatusova
,
T.
,
DiCuccio
,
M.
,
Kitts
,
P.
,
Murphy
,
T. D.
, and
Pruitt
,
K. D.
, “
Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation
,”
Nucleic Acids Res.
44
(
D1
),
D733
D745
(
2016
).
25.
Paraskevis
,
D.
,
Kostaki
,
E. G.
,
Magiorkinis
,
G.
,
Panayiotakopoulos
,
G.
,
Sourvinos
,
G.
, and
Tsiodras
,
S.
, “
Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event
,”
Infect., Genet. Evol.
79
,
104212
(
2020
).
26.
Park
,
J.-E.
,
Li
,
K.
,
Barlan
,
A.
,
Fehr
,
A. R.
,
Perlman
,
S.
,
McCray
,
P. B.
, and
Gallagher
,
T.
, “
Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
43
),
12262
12267
(
2016
).
27.
Peng
,
C.
,
Zhu
,
Z.
,
Shi
,
Y.
,
Wang
,
X.
,
Mu
,
K.
,
Yang
,
Y.
,
Zhang
,
X.
,
Xu
,
Z.
, and
Zhu
,
W.
, “
Exploring the binding mechanism and accessible angle of SARS-CoV-2 spike and ACE2 by molecular dynamics simulation and free energy calculation
,” chemrxiv:11877492.v1 (
2020
).
28.
Phillips
,
J. C.
,
Braun
,
R.
,
Wang
,
W.
,
Gumbart
,
J.
,
Tajkhorshid
,
E.
,
Villa
,
E.
,
Chipot
,
C.
,
Skeel
,
R. D.
,
Kalé
,
L.
, and
Schulten
,
K.
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
(
16
),
1781
1802
(
2005
).
29.
Pullara
,
F.
,
Wenzhi
,
M.
, and
Gür
,
M.
, “
Why protein conformers in molecular dynamics simulations differ from their crystal structures: A thermodynamic insight
,”
Turk. J. Chem.
43
(
2
),
394
403
(
2019
).
30.
Rossen
,
J. W. A.
,
De Beer
,
R.
,
Godeke
,
G.-J.
,
Raamsman
,
M. J. B.
,
Horzinek
,
M. C.
,
Vennema
,
H.
, and
Rottier
,
P. J. M.
, “
The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells
,”
J. Virol.
72
(
1
),
497
503
(
1998
).
31.
Shah
,
M.
,
Ahmad
,
B.
,
Choi
,
S.
, and
Woo
,
H. G.
, “
Sequence variation of SARS-CoV-2 spike protein may facilitate stronger interaction with ACE2 promoting high infectivity
,”
Research Square
(published online
2020
).
32.
Smith
,
M.
and
Smith
,
J. C.
, “
Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface
,”
ChemRxiv
(published online
2020
).
33.
Tang
,
T.
,
Bidon
,
M.
,
Jaimes
,
J. A.
,
Whittaker
,
G. R.
, and
Daniel
,
S.
, “
Coronavirus membrane fusion mechanism offers as a potential target for antiviral development
,”
Antivir. Res.
178
,
104792
(
2020
).
34.
Walls
,
A. C.
,
Park
,
Y.-J.
,
Tortorici
,
M. A.
,
Wall
,
A.
,
McGuire
,
A. T.
, and
Veesler
,
D.
, “
Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
,”
Cell
181
,
281
(
2020
).
35.
Walls
,
A. C.
,
Tortorici
,
M. A.
,
Frenz
,
B.
,
Snijder
,
J.
,
Li
,
W.
,
Rey
,
F. A.
,
DiMaio
,
F.
,
Bosch
,
B.-J.
, and
Veesler
,
D.
, “
Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
,”
Nat. Struct. Mol. Biol.
23
(
10
),
899
(
2016
).
36.
Walls
,
A. C.
,
Tortorici
,
M. A.
,
Snijder
,
J.
,
Xiong
,
X.
,
Bosch
,
B.-J.
,
Rey
,
F. A.
, and
Veesler
,
D.
, “
Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
42
),
11157
11162
(
2017
).
37.
Walls
,
A. C.
,
Xiong
,
X.
,
Park
,
Y.-J.
,
Tortorici
,
M. A.
,
Snijder
,
J.
,
Quispe
,
J.
,
Cameroni
,
E.
,
Gopal
,
R.
,
Dai
,
M.
,
Lanzavecchia
,
A.
,
Zambon
,
M.
,
Rey
,
F. A.
,
Corti
,
D.
, and
Veesler
,
D.
, “
Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
,”
Cell
176
(
5
),
1026
1039.e1015
(
2019
)
38.
Waterhouse
,
A.
,
Bertoni
,
M.
,
Bienert
,
S.
,
Studer
,
G.
,
Tauriello
,
G.
,
Gumienny
,
R.
,
Heer
,
F. T.
,
de Beer
,
T. A. P.
,
Rempfer
,
C.
,
Bordoli
,
L.
,
Lepore
,
R.
, and
Schwede
,
T.
, “
SWISS-MODEL: Homology modelling of protein structures and complexes
,”
Nucleic Acids Res.
46
(
W1
),
W296
W303
(
2018
).
39.
Wong
,
S. K.
,
Li
,
W.
,
Moore
,
M. J.
,
Choe
,
H.
, and
Farzan
,
M.
, “
A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2
,”
J. Biol. Chem.
279
(
5
),
3197
3201
(
2004
).
40.
Wrapp
,
D.
,
Wang
,
N.
,
Corbett
,
K. S.
,
Goldsmith
,
J. A.
,
Hsieh
,
C.-L.
,
Abiona
,
O.
,
Graham
,
B. S.
, and
McLellan
,
J. S.
, “
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
,”
Science
367
(
6483
),
1260
1263
(
2020
).
41.
Wu
,
F.
,
Zhao
,
S.
,
Yu
,
B.
,
Chen
,
Y.-M.
,
Wang
,
W.
,
Song
,
Z.-G.
,
Hu
,
Y.
,
Tao
,
Z.-W.
,
Tian
,
J.-H.
,
Pei
,
Y.-Y.
,
Yuan
,
M.-L.
,
Zhang
,
Y.-L.
,
Dai
,
F.-H.
,
Liu
,
Y.
,
Wang
,
Q.-M.
,
Zheng
,
J.-J.
,
Xu
,
L.
,
Holmes
,
E. C.
, and
Zhang
,
Y.-Z.
, “
A new coronavirus associated with human respiratory disease in China
,”
Nature
579
(
7798
),
265
269
(
2020
).
42.
Xiong
,
X.
,
Tortorici
,
M. A.
,
Snijder
,
J.
,
Yoshioka
,
C.
,
Walls
,
A. C.
,
Li
,
W.
,
McGuire
,
A. T.
,
Rey
,
F. A.
,
Bosch
,
B. J.
, and
Veesler
,
D.
, “
Glycan shield and fusion activation of a delta coronavirus spike glycoprotein fine-tuned for enteric infections
,”
J. Virol.
92
(
4
),
e01628
01617
(
2018
).
43.
Yang
,
X.-L.
,
Hu
,
B.
,
Wang
,
B.
,
Wang
,
M.-N.
,
Zhang
,
Q.
,
Zhang
,
W.
,
Wu
,
L.-J.
,
Ge
,
X.-Y.
,
Zhang
,
Y.-Z.
,
Daszak
,
P.
,
Wang
,
L.-F.
, and
Shi
,
Z.-L.
, “
Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus
,”
J. Virol.
90
(
6
),
3253
3256
(
2016
).
44.
Zhang
,
G.
,
Pomplun
,
S.
,
Loftis
,
A. R.
,
Loas
,
A.
, and
Pentelute
,
B. L.
, “
The first-in-class peptide binder to the SARS-CoV-2 spike protein
,” bioRxiv: (
2020
).
45.
Zhou
,
P.
,
Yang
,
X.-L.
,
Wang
,
X.-G.
,
Hu
,
B.
,
Zhang
,
L.
,
Zhang
,
W.
,
Si
,
H.-R.
,
Zhu
,
Y.
,
Li
,
B.
,
Huang
,
C.-L.
,
Chen
,
H.-D.
,
Chen
,
J.
,
Luo
,
Y.
,
Guo
,
H.
,
Jiang
,
R.-D.
,
Liu
,
M.-Q.
,
Chen
,
Y.
,
Shen
,
X.-R.
,
Wang
,
X.
,
Zheng
,
X.-S.
,
Zhao
,
K.
,
Chen
,
Q.-J.
,
Deng
,
F.
,
Liu
,
L.-L.
,
Yan
,
B.
,
Zhan
,
F.-X.
,
Wang
,
Y.-Y.
,
Xiao
,
G.-F.
and
Shi
,
Z.-L.
, “
A pneumonia outbreak associated with a new coronavirus of probable bat origin
,”
Nature
579
(
7798
),
270
273
(
2020
).
46.
Zhu
,
N.
,
Zhang
,
D.
,
Wang
,
W.
,
Li
,
X.
,
Yang
,
B.
,
Song
,
J.
,
Zhao
,
X.
,
Huang
,
B.
,
Shi
,
W.
, and
Lu
,
R.
, “
A novel coronavirus from patients with pneumonia in China, 2019
,”
N. Engl. J. Med.
382
(
8
),
727
733
(
2020
).

Supplementary Material

You do not currently have access to this content.