We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used density functional theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials’ design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum–niobium–titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure, and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between density functional theory and classical interatomic potential calculations.

1.
K.
Gubaev
,
E. V.
Podryabinkin
,
G. L. W.
Hart
, and
A. V.
Shapeev
,
Comput. Mater. Sci.
156
,
148
(
2019
).
2.
T.
Kostiuchenko
,
F.
Körmann
,
J.
Neugebauer
, and
A.
Shapeev
,
npj Comput. Mater.
5
,
1
(
2019
).
3.
C.
Wen
,
Y.
Zhang
,
C.
Wang
,
D.
Xue
,
Y.
Bai
,
S.
Antonov
,
L.
Dai
,
T.
Lookman
, and
Y.
Su
,
Acta Mater.
170
,
109
(
2019
).
4.
C. F.
Guerra
,
J.
Snijders
,
G. t.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
5.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
6.
Y.
Zuo
,
C.
Chen
,
X.
Li
,
Z.
Deng
,
Y.
Chen
,
J.
Behler
,
G.
Csányi
,
A. V.
Shapeev
,
A. P.
Thompson
,
M. A.
Wood
 et al.,
J. Phys. Chem. A
124
,
731
(
2020
).
7.
C.
Chen
,
Z.
Deng
,
R.
Tran
,
H.
Tang
,
I.-H.
Chu
, and
S. P.
Ong
,
Phys. Rev. Mater.
1
,
043603
(
2017
).
8.
M. A.
Wood
,
M. A.
Cusentino
,
B. D.
Wirth
, and
A. P.
Thompson
,
Phys. Rev. B
99
,
184305
(
2019
).
9.
R.
Batra
and
S.
Sankaranarayanan
Machine learning for multi-fidelity scale bridging and dynamical simulations of materials
,”
J. Phys.: Mater.
3
(
3
),
031002
(
2020
).
10.
G.
Pilania
,
J. E.
Gubernatis
, and
T.
Lookman
,
Comput. Mater. Sci.
129
,
156
(
2017
).
11.
P.
Acar
,
Integr. Mater. Manuf. Innovation
7
,
186
(
2018
).
12.
G.
Sun
,
G.
Li
,
M.
Stone
, and
Q.
Li
,
Comput. Mater. Sci.
49
,
500
(
2010
).
13.
M.
Razi
,
A.
Narayan
,
R. M.
Kirby
, and
D.
Bedrov
,
Comput. Mater. Sci.
152
,
125
(
2018
).
14.
C.
Chen
,
Y.
Zuo
,
W.
Ye
,
X.
Li
, and
S. P.
Ong
, arXiv:2005.04338 (
2020
).
15.
R.
Ramprasad
,
R.
Batra
,
G.
Pilania
,
A.
Mannodi-Kanakkithodi
, and
C.
Kim
,
npj Comput. Mater.
3
,
1
(
2017
).
16.
D.
Xue
,
P. V.
Balachandran
,
J.
Hogden
,
J.
Theiler
,
D.
Xue
, and
T.
Lookman
,
Nat. Commun.
7
,
1
(
2016
).
17.
A.
Mannodi-Kanakkithodi
,
G.
Pilania
,
T. D.
Huan
,
T.
Lookman
, and
R.
Ramprasad
,
Sci. Rep.
6
,
20952
(
2016
).
18.
A.
Patra
,
R.
Batra
,
A.
Chandrasekaran
,
C.
Kim
,
T. D.
Huan
, and
R.
Ramprasad
,
Comput. Mater. Sci.
172
,
109286
(
2020
).
19.
A.
Tran
,
D.
Liu
,
L.
He-Bitoun
, and
Y.
Wang
,
Uncertainty Quantification in Multiscale Materials Modeling
(
Elsevier
,
2020
).
20.
A.
Tran
,
L.
He
, and
Y.
Wang
,
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
4
,
011006
(
2018
).
21.
O.-P.
Koistinen
,
V.
Asgeirsson
,
A.
Vehtari
, and
H.
Jónsson
,
J. Chem. Theory Comput.
15
(
12
),
6738
6751
(
2019
).
22.
M.
Razi
,
A.
Narayan
,
R. M.
Kirby
, and
D.
Bedrov
,
Comput. Mater. Sci.
176
,
109518
(
2020
).
23.
A.
Tran
,
T.
Wildey
, and
S.
McCann
, in
Proceedings of the ASME 2019 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1: 39th Computers and Information in Engineering Conference
(
American Society of Mechanical Engineers
,
2019
), p.
v001T02A073
.
24.
A.
Tran
,
T.
Wildey
, and
S.
McCann
,
J. Comput. Inf. Sci. Eng.
20
,
031007
(
2020
).
25.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
26.
A. E.
Mattsson
,
P. A.
Schultz
,
M. P.
Desjarlais
,
T. R.
Mattsson
, and
K.
Leung
,
Modell. Simul. Mater. Sci. Eng.
13
,
R1
(
2004
).
27.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
etal.,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
28.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
etal.,
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
F.
Tran
,
J.
Stelzl
, and
P.
Blaha
,
J. Chem. Phys.
144
,
204120
(
2016
).
31.
J. E.
Saal
,
S.
Kirklin
,
M.
Aykol
,
B.
Meredig
, and
C.
Wolverton
,
JOM
65
,
1501
(
2013
).
32.
J.
Tranchida
,
P. A.
Schultz
,
A.
Tran
,
M. E.
Chandross
, and
A. P.
Thompson
Temperature dependent elastic properties of ternary random alloys using data-driveninteratomic potentials: application to AlNbTi
” (to be published) (
2020
).
34.
F. D.
Murnaghan
,
Am. J. Math.
59
,
235
(
1937
).
35.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
B.
Shahriari
,
K.
Swersky
,
Z.
Wang
,
R. P.
Adams
, and
N.
de Freitas
,
Proc. IEEE
104
,
148
(
2016
).
37.
C. E.
Rasmussen
,
Gaussian Processes in Machine Learning
(
MIT Press
,
2006
).
38.
M.
Xiao
,
G.
Zhang
,
P.
Breitkopf
,
P.
Villon
, and
W.
Zhang
,
Appl. Math. Comput.
323
,
120
(
2018
).
39.
I.
Couckuyt
,
A.
Forrester
,
D.
Gorissen
,
F.
De Turck
, and
T.
Dhaene
,
Adv. Eng. Software
49
,
1
(
2012
).
40.
I.
Couckuyt
,
T.
Dhaene
, and
P.
Demeester
,
ooDACE toolbox, A Matlab Kriging toolbox: Getting started
(
Universiteit Gent
,
2013
), p.
3
.
41.
I.
Couckuyt
,
T.
Dhaene
, and
P.
Demeester
,
J. Mach. Res.
15
,
3183
(
2014
).
42.
A. I. J.
Forrester
,
A.
Sóbester
, and
A. J.
Keane
,
Proc. R. Soc. London, Sect. A
463
,
3251
(
2007
).
43.
X.
Yang
,
X.
Zhu
, and
J.
Li
,
SIAM J. Sci. Comput.
42
,
A220
(
2020
).
44.
N.
Srinivas
,
A.
Krause
,
S. M.
Kakade
, and
M.
Seeger
, arXiv:0912.3995 (
2009
).
45.
N.
Srinivas
,
A.
Krause
,
S. M.
Kakade
, and
M. W.
Seeger
,
IEEE Trans. Inf. Theory
58
,
3250
(
2012
).
46.
C.
Daniel
,
M.
Viering
,
J.
Metz
,
O.
Kroemer
, and
J.
Peters
, in
Robotics: Science and Systems
,
2014
.
47.
A.
Tran
,
M.
Eldred
,
Y.
Wang
, and
S.
McCann
, ASME IDETC/CIE 2020,
2020
.
48.
L.
Shu
,
P.
Jiang
,
X.
Shao
, and
Y.
Wang
,
J. Mech. Des.
142
,
091703
(
2020
).
49.
A.
Tran
,
M.
Tran
, and
Y.
Wang
,
Struct. Multidiscip. Optim.
59
,
2131
(
2019
).
50.
A.
Tran
,
J.
Sun
,
J. M.
Furlan
,
K. V.
Pagalthivarthi
,
R. J.
Visintainer
, and
Y.
Wang
,
Comput. Methods Appl. Mech. Eng.
347
,
827
(
2019
).
51.
A.
Tran
,
J. A.
Mitchell
,
L. P.
Swiler
, and
T.
Wildey
,
Acta Mater.
194
,
80
(
2020
).
52.
E.
van der Giessen
,
P. A.
Schultz
,
N.
Bertin
,
V. V.
Bulatov
,
W.
Cai
,
G.
Csányi
,
S. M.
Foiles
,
M. G. D.
Geers
,
C.
González
,
M.
Hütter
etal.,
Modell. Simul. Mater. Sci. Eng.
28
,
043001
(
2020
).
53.
V.
Bulatov
,
F. F.
Abraham
,
L.
Kubin
,
B.
Devincre
, and
S.
Yip
,
Nature
391
,
669
(
1998
).
54.
J.
Tranchida
,
S. J.
Plimpton
,
P.
Thibaudeau
, and
A. P.
Thompson
,
J. Comput. Phys.
372
,
406
(
2018
).
55.
L. A.
Zepeda-Ruiz
,
A.
Stukowski
,
T.
Oppelstrup
, and
V. V.
Bulatov
,
Nature
550
,
492
(
2017
).
56.
J.
Tranchida
,
P.
Thibaudeau
, and
S.
Nicolis
,
Phys. Rev. E
98
,
042101
(
2018
).
57.
A.
Arsenlis
,
W.
Cai
,
M.
Tang
,
M.
Rhee
,
T.
Oppelstrup
,
G.
Hommes
,
T. G.
Pierce
, and
V. V.
Bulatov
,
Modell. Simul. Mater. Sci. Eng.
15
,
553
(
2007
).
58.
F.
Roters
,
P.
Eisenlohr
,
L.
Hantcherli
,
D. D.
Tjahjanto
,
T. R.
Bieler
, and
D.
Raabe
,
Acta Mater.
58
,
1152
(
2010
).
You do not currently have access to this content.