Using a polymer-masking approach, we have developed metal-free 2D carbon electrocatalysts based on single-layer graphene with and without punched holes and/or N-doping. A combined experimental and theoretical study on the resultant 2D graphene electrodes revealed that a single-layer graphene sheet exhibited a significantly higher electrocatalytic activity at its edge than that over the surface of its basal plane. Furthermore, the electrocatalytic activity of a single-layer 2D graphene sheet was significantly enhanced by simply punching microholes through the graphene electrode due to the increased edge population for the hole-punched graphene electrode. In a good consistency with the experimental observations, our density function theory calculations confirmed that the introduction of holes into a graphene sheet generated additional positive charge along the edge of the punched holes and hence the creation of more highly active sites for the oxygen reduction reaction. The demonstrated concept for less graphene material to be more electrocatalytically active shed light on the rational design of low-cost, but efficient electrocatalysts from 2D graphene for various potential applications ranging from electrochemical sensing to energy conversion and storage.

1.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
2.
L.
Johnson
and
J. E.
Meany
,
Graphene: The Superstrong, Superthin, and Superversatile Material that Will Revolutionize the World
(
Prometheus Books
,
New York
,
2018
).
3.
W.
Yang
,
K. R.
Ratinac
,
S. P.
Ringer
,
P.
Thordarson
,
J. J.
Gooding
, and
F.
Braet
, “
Carbon nanomaterials in biosensors: Should you use nanotubes or graphene?
,”
Angew. Chem., Int. Ed.
49
,
2115
2138
(
2010
).
4.
Y.
Peng
,
D.
Lin
,
J.
Justin Gooding
,
Y.
Xue
, and
L.
Dai
, “
Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibers decorated with gold nanosheets
,”
Carbon
136
,
329
336
(
2018
).
5.
R.
Cheng
,
C.
Ge
,
L.
Qi
,
Z.
Zhang
,
J.
Ma
,
H.
Huang
,
T.
Pan
,
Q.
Dai
, and
L.
Dai
, “
Label-free graphene oxide förster resonance energy transfer sensors for selective detection of dopamine in human serum and cells
,”
J. Phys. Chem. C
122
,
13314
13321
(
2018
).
6.
L.
Yang
,
J.
Shui
,
L.
Du
,
Y.
Shao
,
J.
Liu
,
L.
Dai
, and
Z.
Hu
, “
Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future
,”
Adv. Mater.
31
,
1804799
(
2019
).
7.
X.
Chen
,
R.
Paul
, and
L.
Dai
, “
Carbon-based supercapacitors for efficient energy storage
,”
Natl. Sci. Rev.
4
,
453
489
(
2017
).
8.
L.
Dai
,
D. W.
Chang
,
J.-B.
Baek
, and
W.
Lu
, “
Carbon nanomaterials for advanced energy conversion and storage
,”
Small
8
,
1130
1166
(
2012
).
9.
Y.
Zhou
,
C. H.
Wang
,
W.
Lu
, and
L.
Dai
, “
Recent advances in fiber-shaped supercapacitors and lithium-ion batteries
,”
Adv. Mater.
32
,
1902779
(
2020
).
10.
I.-M.
Hsing
,
A. A.
Karyakin
,
J. M.
Pingarrón
, and
J.
Wang (Guest Editors
), “
Special issue: Electrochemistry of graphene
,”
Electroanalysis
26
(
2
),
223
438
(
2014
).
11.
S.
Szunerits
and
R.
Boukherroub
, “
Graphene-based nanomaterials in innovative electrochemistry
,”
Curr. Opin. Electrochem.
10
,
24
30
(
2018
).
12.
Z.
Xiang
,
Q.
Dai
,
J.-F.
Chen
, and
L.
Dai
, “
Edge-functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage
,”
Adv. Mater.
28
,
6253
6261
(
2016
) and references cited therein.
13.
K. R.
Kneten
and
R. L.
McCreery
, “
Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes
,”
Anal. Chem.
64
,
2518
2524
(
1992
).
14.
J.
Xu
,
I.-Y.
Jeon
,
J.-M.
Seo
,
S.
Dou
,
L.
Dai
, and
J.-B.
Baek
, “
Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries
,”
Adv. Mater.
26
,
7317
7323
(
2014
).
15.
N. G.
Shang
,
P.
Papakonstantinou
,
M.
McMullan
,
M.
Chu
,
A.
Stamboulis
,
A.
Potenza
,
S. S.
Dhesi
, and
H.
Marchetto
, “
Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes
,”
Adv. Funct. Mater.
18
,
3506
3514
(
2008
).
16.
A.
Ambrosi
,
A.
Bonanni
, and
M.
Pumera
, “
Electrochemistry of folded graphene edges
,”
Nanoscale
3
,
2256
2260
(
2011
).
17.
W.
Li
,
C.
Tan
,
M. A.
Lowe
,
H. C. D.
Abruña
, and
D. C.
Ralph
, “
Electrochemistry of individual monolayer graphene sheets
,”
ACS Nano
5
,
2264
2270
(
2011
).
18.
W.
Yuan
,
Y.
Zhou
,
Y.
Li
,
C.
Li
,
H.
Peng
,
J.
Zhang
,
Z.
Liu
,
L.
Dai
, and
G.
Shi
, “
The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet
,”
Sci. Rep.
3
,
02248
(
2014
).
19.
K.
Gong
,
S.
Chakrabarti
, and
L.
Dai
, “
Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall?
,”
Angew. Chem., Int. Ed.
47
,
5446
5450
(
2008
).
20.
A. N.
Obraztsov
, “
Chemical vapour deposition: Making graphene on a large scale
,”
Nat. Nanotechnol.
4
,
212
213
(
2009
).
21.
R. S.
Nicholson
, “
Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics
,”
Anal. Chem.
37
,
1351
1355
(
1965
).
22.
J.
Koehne
,
J.
Li
,
A. M.
Cassell
,
H.
Chen
,
Q.
Ye
,
H. T.
Ng
,
J.
Han
, and
M.
Meyyappan
, “
The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays
,”
J. Mater. Chem.
14
,
676
684
(
2004
).
23.
D. A.
Walsh
,
K. R. J.
Lovelock
, and
P.
Licence
, “
Ultramicroelectrode voltammetry and scanning electrochemical microscopy in room-temperature ionic liquid electrolytes
,”
Chem. Soc. Rev.
39
,
4185
4194
(
2010
).
24.
R.
Feeney
and
S. P.
Kounaves
, “
Microfabricated ultramicroelectrode arrays: Developments, advances, and applications in environmental analysis
,”
Electroanalysis
12
,
677
684
(
2000
).
25.
K.
Gong
,
F.
Du
,
Z.
Xia
,
M.
Durstock
, and
L.
Dai
, “
Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
,”
Science
323
,
760
764
(
2009
).
26.
L.
Qu
,
Y.
Liu
,
J.-B.
Baek
, and
L.
Dai
, “
Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells
,”
ACS Nano
4
,
1321
1326
(
2010
).
27.
L.
Dai
,
Y.
Xue
,
L.
Qu
,
H. J.
Choi
, and
J. B.
Baek
, “
Metal-free catalysts for oxygen reduction reaction
,”
Chem. Rev.
115
,
4823
4892
(
2015
).
28.
J.
Zhang
,
Z.
Zhao
,
Z.
Xia
, and
L.
Dai
, “
A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
,”
Nat. Nanotechnol.
10
,
444
452
(
2015
).
29.
J.
Zhang
,
Z.
Xia
, and
L.
Dai
, “
Carbon-based electrocatalysts for advanced energy conversion and storage
,”
Sci. Adv.
1
,
e1500564
(
2015
).
30.
C.
Hu
,
X.
Chen
,
Q.
Dai
,
M.
Wang
,
L.
Qu
, and
L.
Dai
, “
Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water
,”
Nano Energy
41
,
367
376
(
2017
).
31.
X.
Liu
and
L.
Dai
, “
Carbon-based metal-free catalysts
,”
Nat. Rev. Mater.
1
,
16064
(
2016
).
32.
L.
Dai (Guest Editor
), “
Special issue: Metal-free carbon electrocatalysts
,”
Adv. Mater.
31
(
13
),
1970090
1805609
(
2019
).
33.
C.
Hu
,
Y.
Xiao
,
Y.
Zou
, and
L.
Dai
, “
Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection
,”
Electrochem. Energy Rev.
1
,
1
29
(
2018
).
34.
R.
Paul
,
Q.
Dai
,
C.
Hu
, and
L.
Dai
, “
Ten years of carbon-based metal-free electrocatalysts
,”
Carbon Energy
1
,
19
31
(
2019
).
35.
Y.-C.
Lin
,
C.-Y.
Lin
, and
P.-W.
Chiu
, “
Controllable graphene N-doping with ammonia plasma
,”
Appl. Phys. Lett.
96
,
133110
(
2010
).
36.
L.
Zhang
and
Z.
Xia
, “
Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells
,”
J. Phys. Chem. C
115
,
11170
11176
(
2011
).
37.
L.
Zhang
,
J.
Niu
,
L.
Dai
, and
Z.
Xia
, “
Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells
,”
Langmuir
28
,
7542
7550
(
2012
).
38.
Z.
Zhao
,
M.
Li
,
L.
Zhang
,
L.
Dai
, and
Z.
Xia
, “
Design principles for heteroatom-doped carbon nanomaterials as highly-efficient catalysts for fuel cells and metal–air batteries
,”
Adv. Mater.
27
,
6834
6840
(
2015
).
39.
J.-i.
Aihara
, “
Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons
,”
J. Phys. Chem. A
103
,
7487
7495
(
1999
).

Supplementary Material

You do not currently have access to this content.