Mathematical models of diffusive transport underpin our understanding of chemical, biochemical, and biological transport phenomena. Analysis of such models often focuses on relatively simple geometries and deals with diffusion through highly idealized homogeneous media. In contrast, practical applications of diffusive transport theory inevitably involve dealing with more complicated geometries as well as dealing with heterogeneous media. One of the most fundamental properties of diffusive transport is the concept of mean particle lifetime or mean exit time, which are particular applications of the concept of first passage time and provide the mean time required for a diffusing particle to reach an absorbing boundary. Most formal analysis of mean particle lifetime applies to relatively simple geometries, often with homogeneous (spatially invariant) material properties. In this work, we present a general framework that provides exact mathematical insight into the mean particle lifetime, and higher moments of particle lifetime, for point particles diffusing in heterogeneous discs and spheres with radial symmetry. Our analysis applies to geometries with an arbitrary number and arrangement of distinct layers, where transport in each layer is characterized by a distinct diffusivity. We obtain exact closed-form expressions for the mean particle lifetime for a diffusing particle released at an arbitrary location, and we generalize these results to give exact, closed-form expressions for any higher-order moment of particle lifetime for a range of different boundary conditions. Finally, using these results, we construct new homogenization formulas that provide an accurate simplified description of diffusion through heterogeneous discs and spheres.

1.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
2001
).
2.
P. L.
Krapivsky
,
S.
Redner
, and
E.
Ben-Naim
,
A Kinetic View of Statistical Physics
(
Cambridge University Press
,
2010
).
3.
B. D.
Hughes
,
Random Walks in Random Environments
(
Oxford University Press
,
1995
).
4.
J.
Bear
,
Dynamics of Fluids in Porous Media
(
Elsevier
,
1971
).
5.
J.
Crank
,
The Mathematics of Diffusion
(
Oxford University Press
,
1975
).
6.
R. B.
Bird
,
W. R.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
John Wiley and Sons
,
2002
).
7.
J. D.
Murray
,
Mathematical Biology: I. An Introduction
(
Springer
,
2002
).
8.
E. A.
Codling
,
M. J.
Plank
, and
S.
Benhamou
, “
Random walk models in biology
,”
J. R. Soc., Interface
5
,
813
834
(
2008
).
9.
E. S.
Oran
and
J. P.
Boris
,
Numerical Simulation of Reactive Flow
(
Cambridge University Press
,
2001
).
10.
M. J.
Saxton
, “
Anomalous diffusion due to obstacles: A Monte Carlo study
,”
J. Chem. Phys.
66
,
394
401
(
1994
).
11.
D.
Lepzelter
and
M.
Zaman
, “
Subdiffusion of proteins and oligomers on membranes
,”
J. Chem. Phys.
137
,
175102
(
2012
).
12.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Characterizing transport through a crowded environment with different obstacle sizes
,”
J. Chem. Phys.
140
,
054108
(
2014
).
13.
A. J.
Ellery
,
R. E.
Baker
, and
M. J.
Simpson
, “
Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice
,”
J. Chem. Phys.
144
,
171104
(
2016
).
14.
M. J.
Simpson
, “
Calculating groundwater response times for flow in heterogeneous porous media
,”
Groundwater
56
,
337
342
(
2018
).
15.
M. J.
Simpson
and
R. E.
Baker
, “
Exact calculations of survival probability for diffusion on growing lines, disks and spheres: The role of dimension
,”
J. Chem. Phys.
143
,
094109
(
2015
).
16.
P.
Lötstedt
and
L.
Meinecke
, “
Simulation of stochastic diffusion via first exit times
,”
J. Comput. Phys.
300
,
862
886
(
2015
).
17.
L.
Meinecke
,
S.
Engblom
,
A.
Hellander
, and
P.
Lötstedt
, “
Analysis and design of jump coefficient in discrete stochastic diffusion models
,”
SIAM J. Sci. Comput.
38
,
A55
A83
(
2016
).
18.
L.
Meinecke
and
P.
Lötstedt
, “
Stochastic diffusion processes on Cartesian meshes
,”
J. Comput. Appl. Math.
294
,
1
11
(
2016
).
19.
L.
Meinecke
, “
Multiscale modeling of diffusion in a crowded environment
,”
Bull. Math. Biol.
79
,
2672
2695
(
2017
).
20.
A. M.
Berezhkovskii
,
C.
Sample
, and
S. Y.
Shvartsman
, “
How long does it take to establish a morphogen gradient?
,”
Biophys. J.
99
,
L59
L61
(
2010
).
21.
A. M.
Berezhkovskii
and
S. Y.
Shvartsman
, “
Physical interpretation of mean local accumulation time of morphogen gradient formation
,”
J. Chem. Phys.
135
,
154115
(
2011
).
22.
E. J.
Carr
and
M. J.
Simpson
, “
Rapid calculation of maximum particle lifetime for diffusion in complex geometries
,”
J. Chem. Phys.
148
,
094113
(
2018
).
23.
E. J.
Carr
and
M. J.
Simpson
, “
New homogenization approaches for stochastic transport through heterogeneous media
,”
J. Chem. Phys.
150
,
044104
(
2019
).
24.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Critical timescales for advection–diffusion–reaction processes
,”
Phys. Rev. E
85
,
041135
(
2012
).
25.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Moments of action provide insight into critical times for advection-diffusion-reaction processes
,”
Phys. Rev. E
86
,
031136
(
2012
).
26.
E. J.
Carr
, “
Characteristic time scales for diffusion processes through layers and across interfaces
,”
Phys. Rev. E
97
,
042115
(
2018
).
27.
V.
Kurella
,
J. C.
Tzou
,
D.
Coombs
, and
M. J.
Ward
, “
Asymptotic analysis of first passage time problems inspired by ecology
,”
Bull. Math. Biol.
77
,
83
125
(
2014
).
28.
A. E.
Lindsay
,
T.
Kolokolnikov
, and
J. C.
Tzou
, “
Narrow escape problem with a mixed trap and the effect of orientation
,”
Phys. Rev. E
91
,
032111
(
2015
).
29.
G.
Vaccario
,
C.
Antoine
, and
J.
Talbot
, “
First-passage times in d-dimensional heterogeneous media
,”
Phys. Rev. Lett.
115
,
240601
(
2015
).
30.
K. A.
Landman
, “
On the crenation of a compound liquid droplet
,”
Stud. Appl. Math.
69
,
51
63
(
1983
).
31.
K. A.
Landman
, “
Stability of a viscous compound fluid drop
,”
AIChE J.
31
,
567
573
(
1985
).
32.
M.
Ma
,
A.
Chiu
,
G.
Sahay
,
J. C.
Doloff
,
N.
Dholakia
,
R.
Thakrar
,
J.
Cohen
,
A.
Vegas
,
D.
Chen
,
K. M.
Bratlie
,
T.
Dang
,
R. L.
York
,
J.
Hollister-Lock
,
G. C.
Weir
, and
D. G.
Anderson
, “
Core-shell hydrogel microcapsules for improved islets encapsulation
,”
Adv. Healthcare Mater.
2
,
667
672
(
2013
).
33.
C. C.
King
,
A. A.
Brown
,
I.
Sargin
,
K. M.
Bratlie
, and
S. P.
Beckman
, “
Modeling of reaction-diffusion transport into a core-shell geometry
,”
J. Theor. Biol.
460
,
204
208
(
2019
).
34.
M. J.
Simpson
and
A. J.
Ellery
, “
An analytical solution for diffusion and nonlinear uptake of oxygen in a spherical cell
,”
Appl. Math. Modell.
36
,
3329
3334
(
2012
).
35.
J. A.
Leedale
,
J. A.
Kyffin
,
A. L.
Harding
,
H. E.
Colley
,
C.
Murdoch
,
P.
Sharma
,
D. P.
Williams
,
S. D.
Webb
, and
R. N.
Bearon
, “
Multiscale modelling of drug transport and metabolism in liver spheroids
,”
Interface Focus
10
,
20190041
(
2019
).
36.
Y.
Davit
,
C. G.
Bell
,
H. M.
Byrne
,
A. C.
Lloyd
,
A. C.
Chapman
,
L. S.
Kimpton
,
G. E.
Lang
,
K. H. L.
Leonard
,
J. M.
Oliver
,
N. C.
Pearson
,
R. J.
Shipley
,
S. L.
Waters
,
J. P.
Whiteley
,
B. D.
Wood
, and
M.
Quintard
, “
Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?
,”
Adv. Water Resour.
62
,
178
206
(
2013
).
37.
B.
Derrida
, “
Velocity and diffusion constant of a periodic one-dimensional hopping model
,”
J. Stat. Phys.
31
,
433
450
(
1982
).
38.
A. M.
Berezhkovskii
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
, “
Effective diffusivity in periodic porous materials
,”
J. Chem. Phys.
119
,
6991
6993
(
2003
).
39.
J. R.
Kalnin
and
A. M.
Berezhkovskii
, “
Note: On the relation between Lifson-Jackson and Derrida formulas for effective diffusion coefficient
,”
J. Chem. Phys.
139
,
196101
(
2013
).
40.
J. R.
Kalnin
and
E. A.
Kotomin
, “
The effective diffusion coefficient in a one-dimensional discrete lattice with the inclusions
,”
Physica B
470-471
,
50
52
(
2015
).
41.
M.
Huysmans
and
A.
Dassargues
, “
Equivalent diffusion coefficient and equivalent diffusion accessible porosity of a stratified porous medium
,”
Transp. Porous Media
66
,
421
438
(
2007
).
42.
E. W.
Weisstein
, Sphere point picking. MathWorld—A Wolfram web resource, https://mathworld.wolfram.com/SpherePointPicking.html,
2019
.
43.
E. J.
Carr
,
J. M.
Ryan
, and
M. J.
Simpson
, https://github.com/elliotcarr/Carr2020c,
2020
.
44.
S.
Karlin
and
H. M.
Taylor
,
A Second Course in Stochastic Processes
(
Academic Press
,
1981
).
45.
M. J.
Simpson
,
J. A.
Sharp
, and
R. E.
Baker
, “
Survival probability for a diffusive process on a growing domain
,”
Phys. Rev. E
91
,
042701
(
2015
).

Supplementary Material

You do not currently have access to this content.