We present the derivation and implementation of complex, frequency-dependent polarizabilities for excited states using the algebraic–diagrammatic construction for the polarization propagator (ADC) and its intermediate state representation. Based on the complex polarizability, we evaluate C6 dispersion coefficients for excited states. The methodology is implemented up to third order in perturbation theory in the Python-driven adcc toolkit for the development and application of ADC methods. We exemplify the approach using illustrative model systems and compare it to results from other ab initio methods and from experiments.
REFERENCES
1.
T.
Helgaker
, S.
Coriani
, P.
Jørgensen
, K.
Kristensen
, J.
Olsen
, and K.
Ruud
, “Recent advances in wave function-based methods of molecular-property calculations
,” Chem. Rev.
112
, 543
–631
(2012
).2.
P.
Norman
, K.
Ruud
, and T.
Saue
, Principles and Practices of Molecular Properties; Theory, Modeling and Simulations
(John Wiley & Sons
, 2018
).3.
J.
Schirmer
, “Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,” Phys. Rev. A
26
, 2395
–2416
(1982
).4.
J.
Schirmer
and A. B.
Trofimov
, “Intermediate state representation approach to physical properties of electronically excited molecules
,” J. Chem. Phys.
120
, 11449
–11464
(2004
).5.
A. B.
Trofimov
, I. L.
Krivdina
, J.
Weller
, and J.
Schirmer
, “Algebraic-diagrammatic construction propagator approach to molecular response properties
,” Chem. Phys.
329
, 1
–10
(2006
).6.
T.
Fransson
, D. R.
Rehn
, A.
Dreuw
, and P.
Norman
, “Static polarizabilities and C6 dispersion coefficients using the algebraic-diagrammatic construction scheme for the complex polarization propagator
,” J. Chem. Phys.
146
, 094301
(2017
).7.
M.
Hodecker
, D. R.
Rehn
, P.
Norman
, and A.
Dreuw
, “Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. II. Static polarizabilities
,” J. Chem. Phys.
150
, 174105
(2019
).8.
S.
Knippenberg
, D. R.
Rehn
, M.
Wormit
, J. H.
Starcke
, I. L.
Rusakova
, A. B.
Trofimov
, and A.
Dreuw
, “Calculation of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: Two-photon absorption spectra
,” J. Chem. Phys.
136
, 064107
(2012
).9.
D. R.
Rehn
, A.
Dreuw
, and P.
Norman
, “Resonant inelastic x-ray scattering amplitudes and cross section in the algebraic diagrammatic construction/intermediate state representation (ADC/ISR) approach
,” J. Chem. Theory Comput.
13
, 5552
–5559
(2017
).10.
D.
Jonsson
, P.
Norman
, Y.
Luo
, and H.
Ågren
, “Response theory for static and dynamic polarizabilities of excited states
,” J. Chem. Phys.
105
, 581
(1996
).11.
C.
Hättig
, O.
Christiansen
, S.
Coriani
, and P.
Jorgensen
, “Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory
,” J. Chem. Phys.
109
, 9237
–9243
(1998
).12.
K. D.
Nanda
and A. I.
Krylov
, “Static polarizabilities for excited states within the spin-conserving and spin-flipping equation-of-motion coupled-cluster singles and doubles formalism: Theory, implementation, and benchmarks
,” J. Chem. Phys.
145
, 204116
(2016
).13.
M. F.
Herbst
, M.
Scheurer
, T.
Fransson
, D. R.
Rehn
, and A.
Dreuw
, “adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(published online).14.
P.
Norman
, D.
Jonsson
, and H.
Ågren
, “Excited state properties through cubic response theory: Polarizabilities of benzene and naphthalene
,” Chem. Phys. Lett.
268
, 337
–344
(1997
).15.
D.
Jonsson
, P.
Norman
, and H.
Ågren
, “Single determinant calculations of excited state polarizabilities
,” Chem. Phys.
224
, 201
–214
(1997
).16.
D.
Jonsson
, P.
Norman
, H.
Ågren
, Y.
Luo
, K. O.
Sylvester-Hvid
, and K. V.
Mikkelsen
, “Excited state polarizabilities in solution obtained by cubic response theory: Calculations on para-, ortho-, and meta-nitroaniline
,” J. Chem. Phys.
109
, 6351
(1998
).17.
J. F.
Stanton
and J.
Gauss
, “The first excited singlet state of s-tetrazine: A theoretical analysis of some outstanding questions
,” J. Chem. Phys.
104
, 9859
–9869
(1996
).18.
L. F.
Pasteka
, M.
Melichercik
, P.
Neogrady
, and M.
Urban
, “CASPT2 and CCSD(T) calculations of dipole moments and polarizabilities of acetone in excited states
,” Mol. Phys.
110
, 2219
–2237
(2012
).19.
N. K.
Graf
, D. H.
Friese
, N. O. C.
Winter
, and C.
Hättig
, “Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation
,” J. Chem. Phys.
143
, 244108
(2015
).20.
M.
Medved
, S.
Budzak
, and T.
Pluta
, “Electric properties of the low-lying excited states of benzonitrile: Geometry relaxation and solvent effects
,” Theor. Chem. Acc.
134
, 78
(2015
).21.
K. D.
Nanda
and A. I.
Krylov
, “Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method
,” J. Chem. Phys.
146
, 224103
(2017
).22.
M.
Schütz
, J.
Hutter
, and H. P.
Lüthi
, “The molecular and electronic structure of s-tetrazine in the ground and first excited state: A theoretical investigation
,” J. Chem. Phys.
103
, 7048
(1995
).23.
B.
Jansik
, D.
Jonsson
, P.
Sałek
, and H.
Ågren
, “Calculations of static and dynamic polarizabilities of excited states by means of density functional theory
,” J. Chem. Phys.
121
, 7595
–7600
(2004
).24.
P.
Norman
, A.
Jiemchooroj
, and B. E.
Sernelius
, “First principle calculations of dipole-dipole dispersion coefficients for the ground and first π → π* excited states of some azabenzenes
,” J. Comput. Methods Sci. Eng.
4
, 321
–332
(2004
).25.
R. F.
Pauszek
III, G.
Kodali
, and R. J.
Stanley
, “Excited state electronic structures of 5,10-methenyltetrahydrofolate and 5,10-methylenetetrahydrofolate determined by stark spectroscopy
,” J. Phys. Chem. A
118
, 8320
–8328
(2014
).26.
M.
Hodecker
, D. R.
Rehn
, A.
Dreuw
, and S.
Höfener
, “Similarities and differences of the Lagrange formalism and the intermediate state representation in the treatment of molecular properties
,” J. Chem. Phys.
150
, 164125
(2019
).27.
J. F.
Stanton
and R. J.
Bartlett
, “The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,” J. Chem. Phys.
98
, 7029
(1993
).28.
K. D.
Nanda
and A. I.
Krylov
, “Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks
,” J. Chem. Phys.
142
, 064118
(2015
).29.
A.
Dreuw
and M.
Wormit
, “The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
, 82
–95
(2015
).30.
J.
Schirmer
, Many-Body Methods for Atoms, Molecules and Clusters
(Springer
, 2018
).31.
J.
Kauczor
, P.
Jørgensen
, and P.
Norman
, “On the efficiency of algorithms for solving Hartree–Fock and Kohn–Sham response equations
,” J. Chem. Theory Comput.
7
, 1610
–1630
(2011
).32.
J.
Kauczor
, P.
Norman
, O.
Christiansen
, and S.
Coriani
, “Communication: A reduced-space algorithm for the solution of the complex linear response equations used in coupled cluster damped response theory
,” J. Chem. Phys.
139
, 211102
(2013
).33.
M. R.
Hestenes
and E.
Stiefel
, “Methods of conjugate gradients for solving linear systems
,” J. Res. Natl. Bur. Stand.
49
, 409
–436
(1952
).34.
H. F.
Walker
and P.
Ni
, “Anderson acceleration for fixed-point iterations
,” SIAM J. Numer. Anal.
49
, 1715
–1735
(2011
).35.
A. J.
Sadlej
, Colect. Czech. Chem. Commun.
53
, 1995
–2016
(1988
).36.
Q.
Sun
, T. C.
Berkelbach
, N. S.
Blunt
, G. H.
Booth
, S.
Guo
, Z.
Li
, J.
Liu
, J. D.
McClain
, E. R.
Sayfutyarova
, S.
Sharma
, S.
Wouters
, and G. K. L.
Chan
, “PySCF: The python-based simulations of chemistry framework
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
, e1340
(2017
).37.
Q.
Sun
, X.
Zhang
, S.
Banerjee
, P.
Bao
, M.
Barbry
, N. S.
Blunt
, N. A.
Bogdanov
, G. H.
Booth
, J.
Chen
, Z.-H.
Cui
, J. J.
Eriksen
, Y.
Gao
, S.
Guo
, J.
Hermann
, M. R.
Hermes
, K.
Koh
, P.
Koval
, S.
Lehtola
, Z.
Li
, J.
Liu
, N.
Mardirossian
, J. D.
McClain
, M.
Motta
, B.
Mussard
, H. Q.
Pham
, A.
Pulkin
, W.
Purwanto
, P. J.
Robinson
, E.
Ronca
, E.
Sayfutyarova
, M.
Scheurer
, H. F.
Schurkus
, J. E. T.
Smith
, C.
Sun
, S.-N.
Sun
, S.
Upadhyay
, L. K.
Wagner
, X.
Wang
, A.
White
, J. D.
Whitfield
, M. J.
Williamson
, S.
Wouters
, J.
Yang
, J. M.
Yu
, T.
Zhu
, T. C.
Berkelbach
, S.
Sharma
, A.
Sokolov
, and G. K.-L.
Chan
, “Recent developments in the PySCF program package
,” J. Chem. Phys.
153
(2
), 024109
(2020
).38.
Y.
Shao
, Z.
Gan
, E.
Epifanovsky
, A. T. B.
Gilbert
, M.
Wormit
, J.
Kussmann
, A. W.
Lange
, A.
Behn
, J.
Deng
, X.
Feng
, D.
Ghosh
, M.
Goldey
, P. R.
Horn
, L. D.
Jacobson
, I.
Kaliman
, R. Z.
Khaliullin
, T.
Kuś
, A.
Landau
, J.
Liu
, E. I.
Proynov
, Y. M.
Rhee
, R. M.
Richard
, M. A.
Rohrdanz
, R. P.
Steele
, E. J.
Sundstrom
, H. L.
Woodcock
, P. M.
Zimmerman
, D.
Zuev
, B.
Albrecht
, E.
Alguire
, B.
Austin
, G. J. O.
Beran
, Y. A.
Bernard
, E.
Berquist
, K.
Brandhorst
, K. B.
Bravaya
, S. T.
Brown
, D.
Casanova
, C.-M.
Chang
, Y.
Chen
, S. H.
Chien
, K. D.
Closser
, D. L.
Crittenden
, M.
Diedenhofen
, R. A.
DiStasio
, H.
Do
, A. D.
Dutoi
, R. G.
Edgar
, S.
Fatehi
, L.
Fusti-Molnar
, A.
Ghysels
, A.
Golubeva-Zadorozhnaya
, J.
Gomes
, M. W. D.
Hanson-Heine
, P. H. P.
Harbach
, A. W.
Hauser
, E. G.
Hohenstein
, Z. C.
Holden
, T.-C.
Jagau
, H.
Ji
, B.
Kaduk
, K.
Khistyaev
, J.
Kim
, J.
Kim
, R. A.
King
, P.
Klunzinger
, D.
Kosenkov
, T.
Kowalczyk
, C. M.
Krauter
, K. U.
Lao
, A. D.
Laurent
, K. V.
Lawler
, S. V.
Levchenko
, C. Y.
Lin
, F.
Liu
, E.
Livshits
, R. C.
Lochan
, A.
Luenser
, P.
Manohar
, S. F.
Manzer
, S.-P.
Mao
, N.
Mardirossian
, A. V.
Marenich
, S. A.
Maurer
, N. J.
Mayhall
, E.
Neuscamman
, C. M.
Oana
, R.
Olivares-Amaya
, D. P.
O’Neill
, J. A.
Parkhill
, T. M.
Perrine
, R.
Peverati
, A.
Prociuk
, D. R.
Rehn
, E.
Rosta
, N. J.
Russ
, S. M.
Sharada
, S.
Sharma
, D. W.
Small
, A.
Sodt
, T.
Stein
, D.
Stück
, Y.-C.
Su
, A. J. W.
Thom
, T.
Tsuchimochi
, V.
Vanovschi
, L.
Vogt
, O.
Vydrov
, T.
Wang
, M. A.
Watson
, J.
Wenzel
, A.
White
, C. F.
Williams
, J.
Yang
, S.
Yeganeh
, S. R.
Yost
, Z.-Q.
You
, I. Y.
Zhang
, X.
Zhang
, Y.
Zhao
, B. R.
Brooks
, G. K. L.
Chan
, D. M.
Chipman
, C. J.
Cramer
, W. A.
Goddard
, M. S.
Gordon
, W. J.
Hehre
, A.
Klamt
, H. F.
Schaefer
, M. W.
Schmidt
, C. D.
Sherrill
, D. G.
Truhlar
, A.
Warshel
, X.
Xu
, A.
Aspuru-Guzik
, R.
Baer
, A. T.
Bell
, N. A.
Besley
, J.-D.
Chai
, A.
Dreuw
, B. D.
Dunietz
, T. R.
Furlani
, S. R.
Gwaltney
, C.-P.
Hsu
, Y.
Jung
, J.
Kong
, D. S.
Lambrecht
, W.
Liang
, C.
Ochsenfeld
, V. A.
Rassolov
, L. V.
Slipchenko
, J. E.
Subotnik
, T.
Van Voorhis
, J. M.
Herbert
, A. I.
Krylov
, P. M. W.
Gill
, and M.
Head-Gordon
, “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,” Mol. Phys.
113
, 184
–215
(2015
).39.
N. M.
O’Boyle
, A. L.
Tenderholt
, and K. M.
Langner
, “cclib: A library for package-independant computational chemistry algorithms
,” J. Comput. Chem.
29
, 839
–845
(2008
).40.
W.
McKinney
, “Data structures for statistical computing in Python
,” in Proceedings of the 9th Python in Science Conference
, edited by S.
van der Walt
and J.
Millman
(SciPy
, 2010
), pp. 51
–56
.41.
W.
McKinney
, “pandas: A foundational Python library for data analysis and statistics
,” in Python for High Performance and Scientific Computing
(PyHPC
, 2011
), available at https://www.dlr.de/sc/en/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf.42.
J. D.
Hunter
, “Matplotlib: A 2D graphics environment
,” Comput. Sci. Eng.
9
, 99
–104
(2007
); arXiv:0402594v3 [arXiv:cond-mat].43.
M.
Waskom
, O.
Botvinnik
, J.
Ostblom
, S.
Lukauskas
, P.
Hobson
, M.
Gelbart
, D. C.
Gemperline
, T.
Augspurger
, Y.
Halchenko
, J. B.
Cole
, J.
Warmenhoven
, J.
de Ruiter
, C.
Pye
, S.
Hoyer
, J.
Vanderplas
, S.
Villalba
, G.
Kunter
, E.
Quintero
, P.
Bachant
, M.
Martin
, K.
Meyer
, C.
Swain
, A.
Miles
, T.
Brunner
, D.
O’Kane
, T.
Yarkoni
, M. L.
Williams
, and C.
Evans
, mwaskom/seaborn: v0.10.0, 2020
.44.
S.
Heitz
, D.
Weidauer
, and A.
Hese
, “Measurement of static polarizabilities on s-tetrazine
,” J. Chem. Phys.
95
, 7952
–7956
(1991
).45.
E. C.
Hurdis
and C. P.
Smyth
, “The structural effects of unsaturation and hyperconjugation in aldehydes, nitriles and chlorides as shown by their dipole moments in the vapor state
,” J. Am. Chem. Soc.
65
, 89
–96
(1943
).46.
S.
Heitz
, D.
Weidauer
, B.
Rosenow
, and A.
Hese
, “Measurement of static polarizabilities on C10H8 and C10D8
,” J. Chem. Phys.
96
, 976
–981
(1992
).47.
A.
Dreuw
and M.
Head-Gordon
, “Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes
,” J. Am. Chem. Soc.
126
, 4007
–4016
(2004
).48.
J. J.
Eriksen
, S. P. A.
Sauer
, K. V.
Mikkelsen
, O.
Christiansen
, H. J. A.
Jensen
, and J.
Kongsted
, “Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline
,” Mol. Phys.
111
, 1235
–1248
(2013
).49.
H. B. G.
Casimir
and D.
Polder
, “The influence of retardation on the London-van der Waals forces
,” Phys. Rev.
73
, 360
–372
(1948
).50.
S.
Van Der Walt
, S. C.
Colbert
, and G.
Varoquaux
, “The NumPy array: A structure for efficient numerical computation
,” Comput. Sci. Eng.
13
, 22
–30
(2011
); arXiv:1102.1523.51.
D.
Lefrancois
, M.
Wormit
, and A.
Dreuw
, “Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz
,” J. Chem. Phys.
143
, 124107
(2015
).52.
E.
Heid
, P. A.
Hunt
, and C.
Schröder
, “Evaluating excited state atomic polarizabilities of chromophores
,” Phys. Chem. Chem. Phys.
20
, 8554
–8563
(2018
).53.
M.
Wormit
, D. R.
Rehn
, P. H. P.
Harbach
, J.
Wenzel
, C. M.
Krauter
, E.
Epifanovsky
, and A.
Dreuw
, “Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach for the polarisation propagator
,” Mol. Phys.
112
, 774
(2014
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.