We present efficient yet rigorous, full-dimensional quantum bound-state calculations of the fully coupled J = 0 and one intra- and intermolecular rovibrational levels of H2O–CO and D2O–CO complexes. The new ab initio nine-dimensional (9D) potential energy surface (PES) [Y. Liu and J. Li, Phys. Chem. Chem. Phys. 21, 24101 (2019)] is employed. In the spirit of the recently introduced general procedure [P. M. Felker and Z. Bačić, J. Chem. Phys. 151, 024305 (2019)], the 9D rovibrational Hamiltonian is partitioned into a 5D (rigid-monomer) intermolecular Hamiltonian, two intramolecular vibrational Hamiltonians—one for the water monomer (3D) and another for the CO monomer (1D), and a 9D remainder term. The low-energy eigenstates of the three reduced-dimension Hamiltonians are used to build up the 9D product contracted basis, in which the matrix of the full rovibrational Hamiltonian is diagonalized. In line with the findings of our earlier study referenced above, the 5D intermolecular eigenstates included in the 9D bases extend up to at most 230 cm−1 above the lowest-energy state of the given parity, much less than the intramolecular fundamentals of the two complexes that span the range of energies from about 1200 cm−1 to 3800 cm−1. The resulting Hamiltonian matrices are small for the 9D quantum problem considered, ≈ 10 000 for J = 0 and 13 500 for J = 1 calculations, allowing for direct diagonalization. The 9D calculations permit exploring a number of features of the rovibrational level structure of H2O–CO and D2O–CO that are beyond the quantum 5D rigid-monomer treatments reported to date. These include the differences in the magnitudes of the hydrogen-exchange tunneling splittings computed in 9D and 5D, the sensitivity of the tunneling splittings to the intramolecular vibrational excitation, the frequency shifts of the intramolecular vibrational modes, which, depending on the mode, can be either blue- or redshifts, and the effects of the excitation of the intramolecular fundamentals on the low-lying intermolecular eigenstates. Also examined is the extent of the eigenstate delocalization over the two minima on the PES. Whenever possible, a comparison is made with the experimental data in the literature.
Skip Nav Destination
,
CHORUS
Article navigation
21 August 2020
Research Article|
August 18 2020
H2O–CO and D2O–CO complexes: Intra- and intermolecular rovibrational states from full-dimensional and fully coupled quantum calculations
Peter M. Felker
;
Peter M. Felker
a)
1
Department of Chemistry and Biochemistry, University of California
, Los Angeles, California 90095-1569, USA
Search for other works by this author on:
Zlatko Bačić
Zlatko Bačić
b)
2
Department of Chemistry, New York University
, New York, New York 10003, USA
3
NYU-ECNU Center for Computational Chemistry at NYU Shanghai
, 3663 Zhongshan Road North, Shanghai 200062, China
b)Electronic mail: [email protected]
Search for other works by this author on:
Peter M. Felker
1,a)
Zlatko Bačić
2,3,b)
1
Department of Chemistry and Biochemistry, University of California
, Los Angeles, California 90095-1569, USA
2
Department of Chemistry, New York University
, New York, New York 10003, USA
3
NYU-ECNU Center for Computational Chemistry at NYU Shanghai
, 3663 Zhongshan Road North, Shanghai 200062, China
a)
Electronic mail: [email protected]
b)Electronic mail: [email protected]
J. Chem. Phys. 153, 074107 (2020)
Article history
Received:
July 02 2020
Accepted:
July 31 2020
Citation
Peter M. Felker, Zlatko Bačić; H2O–CO and D2O–CO complexes: Intra- and intermolecular rovibrational states from full-dimensional and fully coupled quantum calculations. J. Chem. Phys. 21 August 2020; 153 (7): 074107. https://doi.org/10.1063/5.0020566
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
Related Content
Benzene–H2O and benzene–HDO: Fully coupled nine-dimensional quantum calculations of flexible H2O/HDO intramolecular vibrational excitations and intermolecular states of the dimers, and their infrared and Raman spectra using compact bases
J. Chem. Phys. (March 2020)
Flexible water molecule in C60: Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets
J. Chem. Phys. (January 2020)
HCl trimer: HCl-stretch excited intramolecular and intermolecular vibrational states from 12D fully coupled quantum calculations employing contracted intra- and inter-molecular bases
J. Chem. Phys. (April 2024)