We present efficient yet rigorous, full-dimensional quantum bound-state calculations of the fully coupled J = 0 and one intra- and intermolecular rovibrational levels of H2O–CO and D2O–CO complexes. The new ab initio nine-dimensional (9D) potential energy surface (PES) [Y. Liu and J. Li, Phys. Chem. Chem. Phys. 21, 24101 (2019)] is employed. In the spirit of the recently introduced general procedure [P. M. Felker and Z. Bačić, J. Chem. Phys. 151, 024305 (2019)], the 9D rovibrational Hamiltonian is partitioned into a 5D (rigid-monomer) intermolecular Hamiltonian, two intramolecular vibrational Hamiltonians—one for the water monomer (3D) and another for the CO monomer (1D), and a 9D remainder term. The low-energy eigenstates of the three reduced-dimension Hamiltonians are used to build up the 9D product contracted basis, in which the matrix of the full rovibrational Hamiltonian is diagonalized. In line with the findings of our earlier study referenced above, the 5D intermolecular eigenstates included in the 9D bases extend up to at most 230 cm−1 above the lowest-energy state of the given parity, much less than the intramolecular fundamentals of the two complexes that span the range of energies from about 1200 cm−1 to 3800 cm−1. The resulting Hamiltonian matrices are small for the 9D quantum problem considered, ≈ 10 000 for J = 0 and 13 500 for J = 1 calculations, allowing for direct diagonalization. The 9D calculations permit exploring a number of features of the rovibrational level structure of H2O–CO and D2O–CO that are beyond the quantum 5D rigid-monomer treatments reported to date. These include the differences in the magnitudes of the hydrogen-exchange tunneling splittings computed in 9D and 5D, the sensitivity of the tunneling splittings to the intramolecular vibrational excitation, the frequency shifts of the intramolecular vibrational modes, which, depending on the mode, can be either blue- or redshifts, and the effects of the excitation of the intramolecular fundamentals on the low-lying intermolecular eigenstates. Also examined is the extent of the eigenstate delocalization over the two minima on the PES. Whenever possible, a comparison is made with the experimental data in the literature.

1.
A.
van der Avoird
,
P. E. S.
Wormer
, and
R.
Moszynski
,
Chem. Rev.
94
,
1931
(
1994
).
2.
D. H.
Zhang
,
Q.
Wu
,
J. Z. H.
Zhang
,
M.
von Dirke
, and
Z.
Bačić
,
J. Chem. Phys.
102
,
2315
(
1995
).
3.
Z.
Bačić
and
R. E.
Miller
,
J. Phys. Chem.
100
,
12945
(
1996
).
4.
P. E. S.
Wormer
and
A.
van der Avoird
,
Chem. Rev.
100
,
4109
(
2000
).
5.
P. M.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
152
,
124103
(
2020
).
6.
G.
Avila
,
D.
Papp
,
G.
Czakó
, and
E.
Mátyus
,
Phys. Chem. Chem. Phys.
22
,
2792
(
2020
).
7.
P. M.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
151
,
024305
(
2019
).
8.
E.
Castro-Juárez
,
X.-G.
Wang
,
T.
Carrington
, Jr.
,
E.
Quintas-Sánchez
, and
R.
Dawes
,
J. Chem. Phys.
151
,
084307
(
2019
).
9.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
Phys. Chem. Chem. Phys.
21
,
3527
(
2019
).
10.
R.
Schwan
,
C.
Qu
,
D.
Mani
,
N.
Pal
,
L.
van der Meer
,
B.
Redlich
,
C.
Leforestier
,
J. M.
Bowman
,
G.
Schwaab
, and
M.
Havenith
,
Angew. Chem., Int. Ed.
58
,
13119
(
2019
).
11.
M. P.
Metz
,
K.
Szalewicz
,
J.
Sarka
,
R.
Tóbiás
,
A. G.
Császár
, and
E.
Mátyus
,
Phys. Chem. Chem. Phys.
21
,
13504
(
2019
).
12.
S. A.
Ndengué
,
Y.
Scribano
,
D. M.
Benoit
,
F.
Gatti
, and
R.
Dawes
,
Chem. Phys. Lett.
715
,
347
(
2019
).
13.
J.
Huang
,
D.
Yang
,
Y.
Zhou
, and
D.
Xie
,
J. Chem. Phys.
150
,
154302
(
2019
).
14.
S.
Oswald
and
M. A.
Suhm
,
Phys. Chem. Chem. Phys.
21
,
18799
(
2019
).
15.
Y.
Qiu
,
J. Z. H.
Zhang
, and
Z.
Bačić
,
J. Chem. Phys.
108
,
4804
(
1998
).
16.
J. S.
Mancini
and
J. M.
Bowman
,
J. Phys. Chem. Lett.
5
,
2247
(
2014
).
17.
Y.
Wang
and
J. M.
Bowman
,
Chem. Phys. Lett.
491
,
1
(
2010
).
18.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
1599
(
2014
).
19.
U.
Góra
,
W.
Cencek
,
R.
Podeszwa
,
A.
van der Avoird
, and
K.
Szalewicz
,
J. Chem. Phys.
140
,
194101
(
2014
).
20.
A. K.
Samanta
,
Y.
Wang
,
J. S.
Mancini
,
J. M.
Bowman
, and
H.
Reisler
,
Chem. Rev.
116
,
4913
(
2016
).
21.
R. J.
Wheatley
and
A. H.
Harvey
,
J. Chem. Phys.
131
,
154305
(
2009
).
22.
L. A.
Rivera-Rivera
,
B. A.
McElmurry
,
K. W.
Scott
,
S. D.
Springer
,
R. R.
Lucchese
,
J. W.
Bevan
,
I. I.
Leonov
, and
L. H.
Coudert
,
Chem. Phys.
501
,
35
(
2018
).
23.
Y. N.
Kalugina
,
A.
Faure
,
A.
van der Avoird
,
K.
Walker
, and
F.
Lique
,
Phys. Chem. Chem. Phys.
20
,
5469
(
2018
).
24.
D.
Yaron
,
K. I.
Peterson
,
D.
Zolandz
,
W.
Klemperer
,
F. J.
Lovas
, and
R. D.
Suenram
,
J. Chem. Phys.
92
,
7095
(
1990
).
25.
R. E.
Bumgarner
,
S.
Suzuki
,
P. A.
Stockman
,
P. G.
Green
, and
G. A.
Blake
,
Chem. Phys. Lett.
176
,
123
(
1991
).
26.
M. D.
Brookes
and
A. R. W.
McKellar
,
J. Chem. Phys.
109
,
5823
(
1998
).
27.
L.
Oudejans
and
R. E.
Miller
,
Chem. Phys. Lett.
306
,
214
(
1999
).
28.
Y.
Zhu
,
R.
Zheng
,
S.
Li
,
Y.
Yang
, and
C.
Duan
,
J. Chem. Phys.
139
,
214309
(
2013
).
29.
A. J.
Barclay
,
A.
van der Avoird
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
,
Phys. Chem. Chem. Phys.
21
,
14911
(
2019
).
30.
Y.
Liu
and
J.
Li
,
Phys. Chem. Chem. Phys.
21
,
24101
(
2019
).
31.
P. M.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
152
,
014108
(
2020
).
32.
I. I.
Mizus
,
A. A.
Kyuberis
,
N. F.
Zobov
,
V. Y.
Makhnev
,
O. L.
Polyansky
, and
J.
Tennyson
,
Philos. Trans. R. Soc. A
376
,
20170149
(
2018
).
33.
D.
Lauvergnat
,
P.
Felker
,
Y.
Scribano
,
D. M.
Benoit
, and
Z.
Bačić
,
J. Chem. Phys.
150
,
154303
(
2019
).
34.
P. M.
Felker
,
D.
Lauvergnat
,
Y.
Scribano
,
D. M.
Benoit
, and
Z.
Bačić
,
J. Chem. Phys.
151
,
124311
(
2019
).
35.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
117
,
6923
(
2002
).
36.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
37.
J. C.
Tremblay
and
T.
Carrington
,
J. Chem. Phys.
125
,
094311
(
2006
).
38.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
129
,
234102
(
2009
).
39.
G.
Brocks
,
A.
van der Avoird
,
B. T.
Sutcliffe
, and
J.
Tennyson
,
Mol. Phys.
50
,
1025
(
1983
).
40.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
146
,
104105
(
2017
).
41.
B. R.
Johnson
and
W. P.
Reinhardt
,
J. Chem. Phys.
85
,
4538
(
1986
).
42.
Z.
Bačić
,
D.
Watt
, and
J. C.
Light
,
J. Chem. Phys.
89
,
947
(
1988
).
43.
B. T.
Sutcliffe
and
J.
Tennyson
,
Int. J. Quantum Chem.
39
,
183
(
1991
).
44.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
044313
(
2011
).
45.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
46.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
106
,
5085
(
1997
).
47.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
48.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
148
,
074108
(
2018
).
49.
H.
Wei
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
97
,
3029
(
1992
).
51.
J.
Tennyson
,
N. F.
Zobov
,
R.
Williamson
,
O. L.
Polyansky
, and
P. F.
Bernath
,
J. Phys. Chem. Ref. Data
30
,
735
(
2001
).
52.
R. A.
Toth
,
J. Mol. Spectrosc.
195
,
98
(
1999
).

Supplementary Material

You do not currently have access to this content.