Simple models for spherical particles with a soft shell have been shown to self-assemble into numerous crystal phases and even quasicrystals. However, most of these models rely on a simple pairwise interaction, which is usually a valid approximation only in the limit of small deformations, i.e., low densities. In this work, we consider a many-body yet simple model for the evaluation of the elastic energy associated with the deformation of a spherical shell. The resulting energy evaluation, however, is relatively expensive for direct use in simulations. We significantly reduce the associated numerical cost by fitting the potential using a set of symmetry functions. We propose a method for selecting a suitable set of symmetry functions that capture the most relevant features of the particle’s environment in a systematic manner. The fitted interaction potential is then used in Monte Carlo simulations to draw the phase diagram of the system in two dimensions. The system is found to form both a fluid and a hexagonal crystal phase.

1.
M.
Watzlawek
,
C. N.
Likos
, and
H.
Löwen
,
Phys. Rev. Lett.
82
,
5289
(
1999
).
2.
J. M.
Ren
,
T. G.
McKenzie
,
Q.
Fu
,
E. H. H.
Wong
,
J.
Xu
,
Z.
An
,
S.
Shanmugam
,
T. P.
Davis
,
C.
Boyer
, and
G. G.
Qiao
,
Chem. Rev.
116
,
6743
(
2016
).
3.
J.
Riest
,
L.
Athanasopoulou
,
S. A.
Egorov
,
C. N.
Likos
, and
P.
Ziherl
,
Sci. Rep.
5
,
15854
(
2015
).
4.
K. M.
Salerno
,
A. E.
Ismail
,
J. M. D.
Lane
, and
G. S.
Grest
,
J. Chem. Phys.
140
,
194904
(
2014
).
5.
S. M.
Hashmi
and
E. R.
Dufresne
,
Soft Matter
5
,
3682
(
2009
).
6.
P. S.
Mohanty
,
D.
Paloli
,
J. J.
Crassous
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
J. Chem. Phys.
140
,
094901
(
2014
).
7.
M. J.
Bergman
,
N.
Gnan
,
M.
Obiols-Rabasa
,
J.-M.
Meijer
,
L.
Rovigatti
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
Nat. Commun.
9
,
5039
(
2018
).
8.
L.
Rovigatti
,
N.
Gnan
,
A.
Ninarello
, and
E.
Zaccarelli
,
Macromolecules
52
,
4895
(
2019
).
9.
F.
Camerin
,
N.
Gnan
,
J.
Ruiz-Franco
,
A.
Ninarello
,
L.
Rovigatti
, and
E.
Zaccarelli
,
Phys. Rev. X
10
,
031012
(
2020
).
10.
J. C.
Pàmies
,
A.
Cacciuto
, and
D.
Frenkel
,
J. Chem. Phys.
131
,
044514
(
2009
).
11.
S.
Lee
,
M. J.
Bluemle
, and
F. S.
Bates
,
Science
330
,
349
(
2010
).
12.
S.
Hajiw
,
B.
Pansu
, and
J.-F.
Sadoc
,
ACS Nano
9
,
8116
(
2015
).
13.
P.
Ziherl
and
R. D.
Kamien
,
J. Phys. Chem. B
105
,
10147
(
2001
).
14.
L.
Athanasopoulou
and
P.
Ziherl
,
Soft Matter
13
,
1463
(
2017
).
15.
X.
Zeng
,
G.
Ungar
,
Y.
Liu
,
V.
Percec
,
A. E.
Dulcey
, and
J. K.
Hobbs
,
Nature
428
,
157
(
2004
).
16.
T. M.
Gillard
,
S.
Lee
, and
F. S.
Bates
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
5167
(
2016
).
17.
M.
Zu
,
P.
Tan
, and
N.
Xu
,
Nat. Commun.
8
,
2089
(
2017
).
18.
Y. D.
Fomin
,
E. A.
Gaiduk
,
E. N.
Tsiok
, and
V. N.
Ryzhov
,
Mol. Phys.
116
,
3258
(
2018
).
19.
A.-K.
Doukas
,
C. N.
Likos
, and
P.
Ziherl
,
Soft Matter
14
,
3063
(
2018
).
20.
A.
Šiber
and
P.
Ziherl
,
Phys. Rev. Lett.
110
,
214301
(
2013
).
21.
B.
Pansu
and
J.-F.
Sadoc
,
Eur. Phys. J. E
40
,
102
(
2017
).
22.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
23.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
Von Lilienfeld
, and
R.
Armiento
,
Phys. Rev. Lett.
117
,
135502
(
2016
).
24.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
25.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
26.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
27.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
28.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
29.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
30.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
31.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
,
Phys. Rev. B
88
,
054104
(
2013
).
32.
F.
Musil
,
S.
De
,
J.
Yang
,
J. E.
Campbell
,
G. M.
Day
, and
M.
Ceriotti
,
Chem. Sci.
9
,
1289
(
2018
).
33.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. B
81
,
100103
(
2010
).
34.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. Lett.
108
,
115701
(
2012
).
35.
P.
Geiger
and
C.
Dellago
,
J. Chem. Phys.
139
,
164105
(
2013
).
36.
V.
Kapil
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
145
,
234103
(
2016
).
37.
B.
Cheng
,
J.
Behler
, and
M.
Ceriotti
,
J. Phys. Chem. Lett.
7
,
2210
(
2016
).
38.
A.
Singraber
,
T.
Morawietz
,
J.
Behler
, and
C.
Dellago
,
J. Chem. Theory Comput.
15
,
3075
(
2019
).
39.
J.
Behler
,
Int. J. Quantum Chem.
115
,
1032
(
2015
).
40.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
,
J. Chem. Phys.
148
,
241709
(
2018
).
41.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
148
,
241730
(
2018
).
42.
B. A.
Helfrecht
,
R. K.
Cersonsky
,
G.
Fraux
, and
M.
Ceriotti
, arXiv:2002.05076 (
2020
).
43.
See https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf for a document on how to generate equidistributed points on the surface of a sphere.
44.
D. M.
Ceperley
and
M.
Dewing
,
J. Chem. Phys.
110
,
9812
(
1999
).
45.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
46.
H.
Weber
,
D.
Marx
, and
K.
Binder
,
Phys. Rev. B
51
,
14636
(
1995
).
47.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
,
J. Chem. Phys.
136
,
234107
(
2012
).
You do not currently have access to this content.