Understanding the conformation of a polyelectrolyte (PE) is not only a fundamental challenge in polymer science but also critical for understanding the folding and aggregation of proteins. Here, we develop a theory by systematically including the electrostatic interactions into the self-consistent field theory for polymers to study the conformational behaviors of a single PE in poor solvents. As the backbone charge fraction of the PE increases, our theory predicts that the spherical globule (Sph) can either be elongated to a series of pearl-necklace (PN) structures or be flattened to two novel structures that have not been reported before: biconcave red cell and toroid. While the PN structures are stable conformations, the two fattened structures are metastable. We find that the cylindrical globule, the stability of which is under debate, is an unstable structure. The signature of the PN structures obtained by our calculation is less pronounced than that reported by other theoretical works due to the continuous change in the curvature from the pearl to the necklace, which, however, is in good agreement with the results from molecular simulations and neutron scattering experiments. In addition, our theory reveals different characteristics of the globule to PN transition: the transition from the Sph to the PN with double pearls is discontinuous, whereas those from adjacent PN structures are continuous at finite salt concentrations. Furthermore, we observe different scaling behaviors: the string width is not a constant as a thermal blob but decays as the backbone charge fraction increases.

1.
S.
Förster
and
M.
Schmidt
,
Adv. Polym. Sci.
120
,
51
(
1995
).
2.
C.
Holm
,
M.
Rehahn
,
W.
Oppermann
, and
M.
Schmidt
,
Polyelectrolytes with Defined Molecular Architecture II
(
Springer-Verlag Berlin Heidelberg
,
2004
).
3.
M.
Müller
,
Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects
(
Springer-Verlag Berlin Heidelberg
,
2014
).
5.
L. D.
Rhein
,
M.
Schlossman
,
A.
O’Lenick
, and
P.
Somasundaran
,
Surfactants in Personal Care Products and Decorative Cosmetics
(
CRC Press
,
2006
).
6.
D. A. Z.
Wever
,
F.
Picchioni
, and
A. A.
Broekhuis
,
Prog. Polym. Sci.
36
,
1558
(
2011
).
7.
K.
He
,
H.
Duan
,
G. Y.
Chen
,
X.
Liu
,
W.
Yang
, and
D.
Wang
,
ACS Nano
9
,
9188
(
2015
).
8.
C.
Schmitt
and
S. L.
Turgeon
,
Adv. Colloid Interface Sci.
167
,
63
(
2011
).
9.
A. P.
Steinberg
and
Z.-G.
Wang
,
Biomacromolecules
20
,
2675
(
2019
).
10.
T.
Oya
,
T.
Enoki
,
A. Y.
Grosberg
,
S.
Masamune
,
T.
Sakiyama
,
Y.
Takeoka
,
K.
Tanaka
,
G.
Wang
,
Y.
Yilmaz
,
M. S.
Feld
,
R.
Dasari
, and
T.
Tanaka
,
Science
286
,
1543
(
1999
).
11.
N. J.
Shah
,
M. N.
Hyder
,
M. A.
Quadir
,
N.-M.
Dorval Courchesne
,
H. J.
Seeherman
,
M.
Nevins
,
M.
Spector
, and
P. T.
Hammond
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
12847
(
2014
).
12.
S.
Roy
,
N. M.
Elbaz
,
W. J.
Parak
, and
N.
Feliu
,
ACS Appl. Bio Mater.
2
,
3245
(
2019
).
13.
D. T.
Hallinan
and
N. P.
Balsara
,
Annu. Rev. Mater. Res.
43
,
503
(
2013
).
14.
J.
Mindemark
,
M. J.
Lacey
,
T.
Bowden
, and
D.
Brandell
,
Prog. Polym. Sci.
81
,
114
(
2018
).
15.
G. C. L.
Wong
and
L.
Pollack
,
Annu. Rev. Phys. Chem.
61
,
171
(
2010
).
16.
M.
Rubinstein
and
R. H.
Colby
,
Phys. Rev. Lett.
73
,
2776
(
1994
).
17.
Q.
Liao
,
A. V.
Dobrynin
, and
M.
Rubinstein
,
Macromolecules
36
,
3386
(
2003
).
18.
P.-Y.
Hsiao
and
E.
Luijten
,
Phys. Rev. Lett.
97
,
148301
(
2006
).
19.
A. M.
Tom
,
S.
Vemparala
,
R.
Rajesh
, and
N. V.
Brilliantov
,
Phys. Rev. Lett.
117
,
147801
(
2016
).
20.
K.
Grass
,
U.
Böhme
,
U.
Scheler
,
H.
Cottet
, and
C.
Holm
,
Phys. Rev. Lett.
100
,
096104
(
2008
).
21.
S.
Fischer
,
A.
Naji
, and
R. R.
Netz
,
Phys. Rev. Lett.
101
,
176103
(
2008
).
22.
M.
Muthukumar
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
12627
(
2016
).
23.
D.
Jia
and
M.
Muthukumar
,
J. Am. Chem. Soc.
141
,
5886
(
2019
).
24.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
25.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1994
).
26.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford
,
2003
).
27.
28.
V. S.
Pande
,
A. Y.
Grosberg
, and
T.
Tanaka
,
Rev. Mod. Phys.
72
,
259
(
2000
).
29.
E.
Shakhnovich
,
Chem. Rev.
106
,
1559
(
2006
).
30.
V.
Munoz
,
Protein Folding, Misfolding and Aggregation
(
RSC
,
2008
).
31.
A.
Dobrynin
and
M.
Rubinstein
,
Prog. Polym. Sci.
30
,
1049
(
2005
).
32.
A.
Dobrynin
,
Curr. Opin. Colloid Interface Sci.
13
,
376
(
2008
).
33.
A. R.
Khokhlov
,
J. Phys. A: Math. Gen.
13
,
979
(
1980
).
34.
35.
Y.
Kantor
and
M.
Kardar
,
Europhys. Lett.
27
,
643
(
1994
).
36.
Y.
Kantor
and
M.
Kardar
,
Phys. Rev. E
51
,
1299
(
1995
).
37.
A. V.
Dobrynin
,
M.
Rubinstein
, and
S. P.
Obukhov
,
Macromolecules
29
,
2974
(
1996
).
38.
S.
Minko
,
A.
Kiriy
,
G.
Gorodyska
, and
M.
Stamm
,
J. Am. Chem. Soc.
124
,
3218
(
2002
).
39.
A.
Kiriy
,
G.
Gorodyska
,
S.
Minko
,
W.
Jaeger
,
P.
Štěpánek
, and
M.
Stamm
,
J. Am. Chem. Soc.
124
,
13454
(
2002
).
40.
L. J.
Kirwan
,
G.
Papastavrou
,
M.
Borkovec
, and
S. H.
Behrens
,
Nano Lett.
4
,
149
(
2004
).
41.
S.
Lages
,
P.
Lindner
,
P.
Sinha
,
A.
Kiriy
,
M.
Stamm
, and
K.
Huber
,
Macromolecules
42
,
4288
(
2009
).
42.
B.
Xi
and
S.-Y.
Ran
,
J. Polym. Sci., Part B: Polym. Phys.
55
,
971
(
2017
).
43.
U.
Micka
,
C.
Holm
, and
K.
Kremer
,
Langmuir
15
,
4033
(
1999
).
44.
A. V.
Lyulin
,
B.
Dünweg
,
O. V.
Borisov
, and
A. A.
Darinskii
,
Macromolecules
32
,
3264
(
1999
).
45.
P.
Chodanowski
and
S.
Stoll
,
J. Chem. Phys.
111
,
6069
(
1999
).
46.
H. J.
Limbach
,
C.
Holm
, and
K.
Kremer
,
Eurphys. Lett.
60
,
566
(
2002
).
47.
H. J.
Limbach
and
C.
Holm
,
J. Phys. Chem. B
107
,
8041
(
2003
).
48.
S.
Uyaver
and
C.
Seidel
,
J. Phys. Chem. B
108
,
18804
(
2004
).
49.
Q.
Liao
,
A. V.
Dobrynin
, and
M.
Rubinstein
,
Macromolecules
39
,
1920
(
2006
).
50.
J.
Jeon
and
A. V.
Dobrynin
,
Macromolecules
40
,
7695
(
2007
).
51.
G.
Reddy
and
A.
Yethiraj
,
Macromolecules
39
,
8536
(
2006
).
52.
R.
Chang
and
A.
Yethiraj
,
Macromolecules
39
,
821
(
2006
).
53.
M. N.
Spiteri
,
C. E.
Williams
, and
F.
Boué
,
Macromolecules
40
,
6679
(
2007
).
54.
W.
Essafi
,
M.-N.
Spiteri
,
C.
Williams
, and
F.
Boué
,
Macromolecules
42
,
9568
(
2009
).
55.
W.
Essfi
,
A.
Abdelli
,
G.
Bouajila
, and
F.
Boué
,
J. Phys. Chem. B
116
,
13525
(
2012
).
56.
S. B.
Mahmoud
,
W.
Essafi
,
A.
Brûlet
, and
F.
Boué
,
Macromolecules
51
,
9259
(
2018
).
57.
F. J.
Solis
and
M.
Olvera de la Cruz
,
Macromolecules
31
,
5502
(
1998
).
58.
G.
Migliorini
,
N.
Lee
,
V.
Rostiashvili
, and
T. A.
Vilgis
,
Eur. Phys. J. E
6
,
259
(
2001
).
59.
H.
Tang
,
Q.
Liao
, and
P.
Zhang
,
J. Chem. Phys.
140
,
194905
(
2014
).
60.
R.
Wang
and
Z.-G.
Wang
,
Macromolecules
45
,
6266
(
2012
).
61.
R.
Wang
and
Z.-G.
Wang
,
Macromolecules
47
,
4094
(
2014
).
62.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford
,
2006
).
63.
64.
Q.
Wang
,
T.
Taniguchi
, and
G. H.
Fredrickson
,
J. Phys. Chem. B
108
,
6733
(
2004
).
65.
C.
Tong
,
Y.
Zhu
,
H.
Zhang
,
F.
Qiu
,
P.
Tang
, and
Y.
Yang
,
J. Phys. Chem. B
115
,
11307
(
2011
).
66.
Y.-X.
Liu
,
H.-D.
Zhang
,
C.-H.
Tong
, and
Y.-L.
Yang
,
Macromolecules
44
,
8261
(
2011
).
67.
I.
Nakamura
and
Z.-G.
Wang
,
Soft Matter
8
,
9356
(
2012
).
68.
C. E.
Sing
,
J. W.
Zwanikken
, and
M.
Olvera de la Cruz
,
Nat. Mater.
13
,
694
(
2014
).
69.
R.
Wang
and
Z.-G.
Wang
,
J. Chem. Phys.
135
,
014707
(
2011
).
70.
K. J.
Hou
and
J.
Qin
,
Macromolecules
51
,
7463
(
2018
).
71.
K.
Shen
and
Z.-G.
Wang
,
J. Chem. Phys.
146
,
084901
(
2017
).
72.
Z.-G.
Wang
,
Phys. Rev. E
81
,
021501
(
2010
).
73.
R.
Wang
and
Z.-G.
Wang
,
J. Chem. Phys.
142
,
104705
(
2015
).
74.
J. D.
Hoffman
,
Numerical Methods for Engineers and Scientists
(
Marcel Dekker
,
2001
).
75.
M. A.
Pigaleva
,
I. V.
Portnov
,
A. A.
Rudov
,
I. V.
Blagodatskikh
,
T. E.
Grigoriev
,
M. O.
Gallyamov
, and
I. I.
Potemkin
,
Macromolecules
47
,
5749
(
2014
).
76.
D. J.
Pochan
,
Z.
Chen
,
H.
Cui
,
K.
Hales
,
K.
Qi
, and
K. L.
Wooley
,
Science
306
,
94
(
2004
).
77.
A.
Sakashita
,
N.
Urakami
,
P.
Ziherl
, and
M.
Imai
,
Soft Matter
8
,
8569
(
2012
).
78.
H.
Noguchi
,
A.
Sakashita
, and
M.
Imai
,
Soft Matter
11
,
193
(
2015
).
79.
B. A. F.
Mann
,
K.
Kremer
,
O.
Lenz
, and
C.
Holm
,
Macromol. Theory Simul.
20
,
721
(
2011
).
80.
M. N.
Tamashiro
and
H.
Schiessel
,
Macromolecules
33
,
5263
(
2000
).

Supplementary Material

You do not currently have access to this content.