The kinetics of the autoxidation reaction of tartaric acid in an air-saturated solution in the presence of Fe(II) show autocatalytic behavior with distinct initiation, propagation, and termination phases. The initiation phase, which involves activation of dissolved oxygen, decreases with increasing pH, over the test range of pH of 2.5–4.5, indicating that activation of oxygen is catalyzed by an Fe(II)–tartrate complex. The autocatalytic nature of this reaction indicates the presence of a catalytic intermediate that is produced during the initiation phase and regenerated during the propagation phase. The addition of catalase, as well as direct measurements, provided evidence of the presence and kinetic action of hydrogen peroxide as one of the intermediates. Direct addition of hydrogen peroxide resulted in shortening of the initiation stage and the propagation phase with similar rates as in the autoxidation reaction at low pH. The propagation is approximately a zero order reaction with respect to oxygen and iron. The kinetic analysis suggests that an intermediate catalytic complex(s) involving a ferryl ion (FeO2+) controls the rate of the propagation reaction. The Fe(III) formation shows autocatalytic behavior that mirrors the dissolved oxygen consumption patterns under all pH conditions studied. At pH values of 2.5 and 3.0, Fe(III) accumulated to a maximum, before it was partially consumed. This maximum coincided with the depletion of dissolved oxygen. The consumption of Fe(III), or the reduction of Fe(III) back to Fe(II), reflects the catalytic nature of Fe(II) and the essential role of tartaric acid in the initiation phase of Fenton’s original reaction.

1.
J. C.
Danilewicz
, “
Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper
,”
Am. J. Enol. Vitic.
54
(
2
),
73
85
(
2003
).
2.
J. C.
Danilewicz
,
J. T.
Seccombe
, and
J.
Whelan
, “
Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine
,”
Am. J. Enol. Vitic.
59
(
2
),
128
136
(
2008
).
3.
R. J.
Elias
,
M. L.
Andersen
,
L. H.
Skibsted
, and
A. L.
Waterhouse
, “
Key factors affecting radical formation in wine studied by spin trapping and EPR spectroscopy
,”
Am. J. Enol. Vitic.
60
(
4
),
471
476
(
2009
).
4.
J.
Ribéreau-Gayon
, “
Contribution à l’étude des oxydations et réductions dans les vins
,” Thèse Doctorat Ès Sciences Physiques,
Bordeaux University Institute of Enology
,
1933
.
5.
H. J. H.
Fenton
, “
Oxidation of tartaric acid in presence of iron
,”
J. Chem. Soc.
65
,
899
910
(
1894
).
6.
H. J. H.
Fenton
, “
The constitution of a new dibasic acid, resulting from the oxidation of tartaric acid
,”
J. Chem. Soc.
69
,
546
562
(
1896
).
7.
W. H.
Koppenol
, “
The centennial of the Fenton reaction
,”
Free Radicals Biol. Med.
15
(
6
),
645
651
(
1993
).
8.
W. H.
Koppenol
, “
The Haber–Weiss cycle—70 years later
,”
Redox Rep.
6
(
4
),
229
234
(
2001
).
9.
W. H.
Koppenol
, “
Hydrogen peroxide, from Wieland to Sies
,”
Arch. Biochem. Biophys.
595
,
9
12
(
2016
).
10.
M. L.
Kremer
, “
Mechanism of the Fenton reaction. Evidence for a new intermediate
,”
Phys. Chem. Chem. Phys.
1
(
15
),
3595
3605
(
1999
).
11.
M. L.
Kremer
, “
Kinetics of aerobic and anaerobic oxidations of ethanol by Fenton’s reagent
,”
Int. J. Chem. Kinet.
40
(
9
),
541
553
(
2008
).
12.
H. B.
Dunford
, “
Oxidations of iron(II)/(III) by hydrogen peroxide: From aquo to enzyme
,”
Coord. Chem. Rev.
233-234
,
311
318
(
2002
).
13.
D. T.
Sawyer
,
A.
Sobkowiak
, and
T.
Matsushita
, “
Metal [ML(x); M=Fe, Cu, Co, Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: Oxygenated Fenton chemistry
,”
Acc. Chem. Res.
29
(
9
),
409
416
(
1996
).
14.
C.
Walling
, “
Fenton’s reagent revisited
,”
Acc. Chem. Res.
8
(
4
),
125
131
(
1975
).
15.
C.
Walling
, “
Intermediates in the reactions of Fenton type reagents
,”
Acc. Chem. Res.
31
(
4
),
155
157
(
1998
).
16.
D. A.
Wink
,
R. W.
Nims
,
J. E.
Saavedra
,
W. E.
Utermahlen
, and
P. C.
Ford
, “
The Fenton oxidation mechanism: Reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical
,”
Proc. Natl. Acad. Sci. U. S. A.
91
(
14
),
6604
6608
(
1994
).
17.
M. L.
Kremer
, “
Promotion of the Fenton reaction by Cu2+ ions: Evidence for intermediates
,”
Int. J. Chem. Kinet.
38
(
12
),
725
736
(
2006
).
18.
M. L.
Kremer
, “
Strong inhibition of the Fe3+ +H2O2 reaction by ethanol: Evidence against the free radical theory
,”
Prog. React. Kinet. Mech.
42
(
4
),
397
413
(
2017
).
19.
H.-F.
Lu
,
H.-F.
Chen
,
C.-L.
Kao
,
I.
Chao
, and
H.-Y.
Chen
, “
A computational study of the Fenton reaction in different pH ranges
,”
Phys. Chem. Chem. Phys.
20
(
35
),
22890
22901
(
2018
).
20.
M. L.
Kremer
, “
The Fenton reaction. Dependence of the rate on pH
,”
J. Phys. Chem. A
107
(
11
),
1734
1741
(
2003
).
21.
M.
Merkofer
,
R.
Kissner
,
R. C.
Hider
,
U. T.
Brunk
, and
W. H.
Koppenol
, “
Fenton chemistry and iron chelation under physiologically relevant conditions: Electrochemistry and kinetics
,”
Chem. Res. Toxicol.
19
(
10
),
1263
1269
(
2006
).
22.
D. L.
Ingles
, “
Studies of oxidations by Fenton’s reagent using redox titration.V. Effect of complex-formation on reaction-mechanism
,”
Aust. J. Chem.
26
(
5
),
1021
1029
(
1973
).
23.
M. A.
Ali
and
T.
Konishi
, “
Enhancement of hydroxyl radical generation in the Fenton reaction by alpha-hydroxy acid
,”
IUBMB Life
46
(
1
),
137
145
(
1998
).
24.
W. H.
Koppenol
, “
Chemistry of iron and copper in radical reactions
,” in
Free Radical Damage and its Control
(
Elsevier
,
1994
), Vol. 28, pp.
3
24
.
25.
P.
Bautista
,
A. F.
Mohedano
,
J. A.
Casas
,
J. A.
Zazo
, and
J. J.
Rodriguez
, “
An overview of the application of Fenton oxidation to industrial wastewaters treatment
,”
J. Chem. Technol. Biotechnol.
83
(
10
),
1323
1338
(
2008
).
26.
J. N.
Moloney
and
T. G.
Cotter
, “
ROS signalling in the biology of cancer
,”
Semin. Cell Dev. Biol.
80
,
50
64
(
2018
).
27.
P.
Werner
, “
Learning from an adversary? Warburg against Wieland
,”
Hist. Stud. Phys. Biol. Sci.
28
,
173
196
(
1997
).
28.
H.
Wieland
and
W.
Franke
, “
Über den mechanismus der oxydationsvorgänge. XIV. Die activierung des sauerstoffs durch eisen
,”
Justus Liebigs Ann. Chem.
464
,
101
226
(
1928
).
29.
K.
Oppenheimer
and
K. G.
Stern
,
Biological Oxidation
(
Springer
,
The Hague
,
1939
).
30.
D. M.
Miller
,
G. R.
Buettner
, and
S. D.
Aust
, “
Transition-metals as catalysts of autoxidation reactions
,”
Free Radical Biol. Med.
8
(
1
),
95
108
(
1990
).
31.
S. Y.
Qian
and
G. R.
Buettner
, “
Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study
,”
Free Radical Biol. Med.
26
(
11-12
),
1447
1456
(
1999
).
32.
W. H.
Koppenol
, “
The Haber–Weiss cycle—71 years later
,”
Redox Rep.
7
(
1
),
59
60
(
2002
).
33.
R. B.
Boulton
,
V. L.
Singleton
,
L. F.
Bisson
, and
R. E.
Kunkee
,
Principles and Practices of Winemaking
(
Chapman & Hall; Springer
,
New York; Boston, MA
,
1996
).
34.
C. V.
Smythe
, “
The mechanism of iron catalysis in certain oxidations
,”
J. Biol. Chem.
90
(
1
),
251
265
(
1931
).
35.
L.
Michaelis
and
E.
Friedheim
, “
Potentiometric studies on complex iron systems
,”
J. Biol. Chem.
91
(
1
),
343
353
(
1931
).
36.
C. F.
Timberlake
, “
Iron–tartrate complexes
,”
J. Chem. Soc.
1964
,
1229
1240
.
37.
F.
Haber
and
J.
Weiss
, “
The catalytic decomposition of hydrogen peroxide by iron salts
,”
Proc. R. Soc. London, Ser. A
147
(
861
),
332
351
(
1934
).
38.
A.
Clark
,
P.
Prenzler
, and
G.
Scollary
, “
Impact of the condition of storage of tartaric acid solutions on the production and stability of glyoxylic acid
,”
Food Chem.
102
(
3
),
905
916
(
2007
).
39.
J. C.
Danilewicz
, “
Mechanism of autoxidation of polyphenols and participation of sulfite in wine: Key role of iron
,”
Am. J. Enol. Vitic.
62
(
3
),
319
328
(
2011
).
40.
V. L.
Singleton
, “
Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications
,”
Am. J. Enol. Vitic.
38
(
1
),
69
77
(
1987
).
41.
H. L.
Wildenradt
and
V. L.
Singleton
, “
The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging
,”
Am. J. Enol. Vitic.
25
(
2
),
119
126
(
1974
).
42.
A. C.
Clark
,
D. A.
Dias
,
T. A.
Smith
,
K. P.
Ghiggino
, and
G. R.
Scollary
, “
Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: Studies in a model wine system
,”
J. Agric. Food Chem.
59
(
8
),
3575
3581
(
2011
).
43.
I. P.
Pozdnyakov
,
A. V.
Kolomeets
,
V. F.
Plyusnin
,
A. A.
Melnikov
,
V. O.
Kompanets
,
S. V.
Chekalin
,
N.
Tkachenko
, and
H.
Lemmetyinen
, “
Photophysics of Fe(III)–tartrate and Fe(III)–citrate complexes in aqueous solutions
,”
Chem. Phys. Lett.
530
,
45
48
(
2012
).
44.
W.
VerWeij
, CHEAQS: A program for calculating CHemical Equilibria in AQuatic Systems, NEXT version (2017.3),
2017
.
45.
R. C.
Weast
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Cleveland, OH
,
1977
).
46.
H.
Yokoi
,
T.
Mitani
,
Y.
Mori
, and
S.
Kawata
, “
Complex formation between iron(III) and tartaric and citric acids in a wide pH range 1 to 13 as studied by magnetic susceptibility measurements
,”
Chem. Lett.
23
(
2
),
281
284
(
1994
).
47.
W.
Luo
,
M. E.
Abbas
,
L.
Zhu
,
K.
Deng
, and
H.
Tang
, “
Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system
,”
Anal. Chim. Acta
629
(
1-2
),
1
5
(
2008
).
48.
J.
Seixas de Melo
,
A. P.
Moura
, and
M. J.
Melo
, “
Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms
,”
J. Phys. Chem. A
108
(
34
),
6975
6981
(
2004
).
49.
J. C.
Ianni
, Kintecus, Version 6.7 www.kintecus.com,
2018
.
50.
W. E.
Walles
and
A. E.
Platt
, “
Autocatalysis analyzed by analog computer and by experimentation
,”
Ind. Eng. Chem.
59
(
6
),
41
49
(
1967
).
51.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1989
).
52.
M.
Bartoszek
and
W.
W Sułkowski
, “
The study of pH influence on bovine liver catalase by means of UV-VIS spectroscopy and spin labelling method
,”
Pol. J. Environ. Stud.
15
,
41
43
(
2006
).
53.
I.
Yamazaki
and
L. H.
Piette
, “
The mechanism of aerobic oxidase reaction catalyzed by peroxidase
,”
Biochim. Biophys. Acta
77
,
47
64
(
1963
).
54.
J.
Bunker
,
T.
Lowry
,
G.
Davis
,
B.
Zhang
,
D.
Brosnahan
,
S.
Lindsay
,
R.
Costen
,
S.
Choi
,
P.
Arosio
, and
G. D.
Watt
, “
Kinetic studies of iron deposition catalyzed by recombinant human liver heavy, and light ferritins and Azotobacter vinelandii bacterioferritin using O2 and H2O2 as oxidants
,”
Biophys. Chem.
114
(
2
),
235
244
(
2005
).
55.
J.
Serrano
,
M.
Jové
,
J.
Boada
,
M. J.
Bellmunt
,
R.
Pamplona
, and
M.
Portero-Otín
, “
Dietary antioxidants interfere with amplex red-coupled-fluorescence assays
,”
Biochem. Biophys. Res. Commun.
388
(
2
),
443
449
(
2009
).
56.
R.
Coleman
,
Kinetics of Oxygen Consumption in Solutions of Iron and Tartaric Acid
(
University of California
,
Davis
,
2019
).
57.
W. C.
Bray
and
M. H.
Gorin
, “
Ferryl ion, a compound of tetravalent iron
,”
J. Am. Chem. Soc.
54
(
5
),
2124
2125
(
1932
).
58.
J. D.
Rush
,
Z.
Maskos
, and
W. H.
Koppenol
, “
Distinction between hydroxyl radical and ferryl species
,”
Method Enzymol.
186
,
148
156
(
1990
).
59.
W. H.
Koppenol
,
D. M.
Stanbury
, and
P. L.
Bounds
, “
Electrode potentials of partially reduced oxygen species, from dioxygen to water
,”
Free Radical Biol. Med.
49
(
3
),
317
322
(
2010
).
60.
B. H. J.
Bielski
,
D. E.
Cabelli
,
R. L.
Arudi
, and
A. B.
Ross
, “
Reactivity of HO2/O2 radicals in aqueous solution
,”
J. Phys. Chem. Ref. Data
14
(
4
),
1041
(
1985
).
61.
P.
George
, “
The oxidation of ferrous perchlorate by molecular oxygen
,”
J. Chem. Soc.
1954
,
4349
.
62.
A. L.
Rose
and
T. D.
Waite
, “
Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter
,”
Environ. Sci. Technol.
36
(
3
),
433
444
(
2002
).
63.
B.
Tadolini
, “
Iron oxidation in mops buffer. Effect of EDTA, hydrogen peroxide and FeCl3
,”
Free Radical Res. Commun.
4
(
3
),
173
182
(
1987
).
64.
K. D.
Welch
,
T. Z.
Davis
, and
S. D.
Aust
, “
Iron autoxidation and free radical generation: Effects of buffers, ligands, and chelators
,”
Arch. Biochem. Biophys.
397
(
2
),
360
369
(
2002
).
65.
J. C.
Danilewicz
, “
Reactions involving iron in mediating catechol oxidation in model wine
,”
Am. J. Enol. Vitic.
64
(
3
),
316
324
(
2013
).
66.
R.
Silaghi-Dumitrescu
,
B. J.
Reeder
,
P.
Nicholls
,
C. E.
Cooper
, and
M. T.
Wilson
, “
Ferryl haem protonation gates peroxidatic reactivity in globins
,”
Biochem. J.
403
(
3
),
391
395
(
2007
).
67.
S.
Goldstein
,
D.
Meyerstein
, and
G.
Czapski
, “
The Fenton reagents
,”
Free Radical Biol. Med.
15
(
4
),
435
445
(
1993
).
68.
P.
Wardman
and
L. P.
Candeias
, “
Fenton chemistry: An introduction
,”
Radiat. Res.
145
(
5
),
523
531
(
1996
).
69.
K.
Barbusinski
, “
Fenton reaction-controversy concerning the chemistry
,”
Ecol. Chem. Eng.
16
(
3
),
347
358
(
2009
).
70.
G. R.
Buettner
, “
Ascorbate autoxidation in the presence of iron and copper chelates
,”
Free Radical Res. Commun.
1
(
6
),
349
353
(
1986
).

Supplementary Material

You do not currently have access to this content.