The Open Knowledgebase of Interatomic Models (OpenKIM) is a framework intended to facilitate access to standardized implementations of interatomic models for molecular simulations along with computational protocols to evaluate them. These protocols include tests to compute material properties predicted by models and verification checks to assess their coding integrity. While housing this content in a unified, publicly available environment constitutes a major step forward for the molecular modeling community, it further presents the opportunity to understand the range of validity of interatomic models and their suitability for specific target applications. To this end, OpenKIM includes a computational pipeline that runs tests and verification checks using all available interatomic models contained within the OpenKIM Repository at https://openkim.org. The OpenKIM Processing Pipeline is built on a set of Docker images hosted on distributed, heterogeneous hardware and utilizes open-source software to automatically run test–model and verification check–model pairs and resolve dependencies between them. The design philosophy and implementation choices made in the development of the pipeline are discussed as well as an example of its application to interatomic model selection.

1.
E. B.
Tadmor
,
R. S.
Elliott
,
J. P.
Sethna
,
R. E.
Miller
, and
C. A.
Becker
,
JOM
63
,
17
(
2011
).
2.
E. B.
Tadmor
,
R. S.
Elliott
,
S. R.
Phillpot
, and
S. B.
Sinnott
,
COSSMS
17
,
298
(
2013
).
3.
R. S.
Elliott
and
E. B.
Tadmor
, “
Knowledgebase of interatomic models (KIM) application programming interface (API)
” (OpenKIM, 2011) .
4.
See https://wiki.fysik.dtu.dk/asap for Asap—As Soon As Possible.
5.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
6.
S. R.
Bahn
and
K. W.
Jacobsen
,
Comput. Sci. Eng.
4
,
56
(
2002
).
7.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
,
J. Mater. Chem.
16
,
1911
(
2006
).
8.
J. D.
Gale
,
J. Chem. Soc., Faraday Trans.
93
,
629
(
1997
).
9.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
10.
A. P.
Bartók
 et al., “
LibAtoms+QUIP: A software library for carrying out molecular dynamics simulations
,” http://www.libatoms.org/.
11.
N. C.
Admal
and
E. B.
Tadmor
,
J. Elasticity
100
,
63
(
2010
).
12.
N. C.
Admal
and
E. B.
Tadmor
,
J. Chem. Phys.
134
,
184106
(
2011
).
13.
P.
Brommer
and
F.
Gähler
,
Philos. Mag.
86
,
753
(
2006
).
14.
P.
Brommer
and
F.
Gähler
,
Modell. Simul. Mater. Sci. Eng.
15
,
295
(
2007
).
15.
P.
Brommer
,
A.
Kiselev
,
D.
Schopf
,
P.
Beck
,
J.
Roth
, and
H.-R.
Trebin
,
Modell. Simul. Mater. Sci. Eng.
23
,
074002
(
2015
).
16.
J.
Janssen
,
S.
Surendralal
,
Y.
Lysogorskiy
,
M.
Todorova
,
T.
Hickel
,
R.
Drautz
, and
J.
Neugebauer
,
Comput. Mater. Sci.
163
,
24
(
2019
).
17.
E. B.
Tadmor
,
M.
Ortiz
, and
R.
Phillips
,
Philos. Mag. A
73
,
1529
(
1996
).
18.
E. B.
Tadmor
,
F.
Legoll
,
W. K.
Kim
,
L. M.
Dupuy
, and
R. E.
Miller
,
Appl. Mech. Rev.
65
,
010803
(
2013
).
19.
C. A.
Becker
,
F.
Tavazza
,
Z. T.
Trautt
, and
R. A.
Buarque de Macedo
,
Curr. Opin. Solid State Mater. Sci.
17
,
277
(
2013
), frontiers in Methods for Materials Simulations.
20.
L. M.
Hale
,
Z. T.
Trautt
, and
C. A.
Becker
,
Modell. Simul. Mater. Sci. Eng.
26
,
055003
(
2018
).
21.
K.
Choudhary
,
F. Y. P.
Congo
,
T.
Liang
,
C.
Becker
,
R. G.
Hennig
, and
F.
Tavazza
,
Sci. Data
4
,
160125
(
2017
).
22.
K.
Choudhary
,
A. J.
Biacchi
,
S.
Ghosh
,
L.
Hale
,
A. R. H.
Walker
, and
F.
Tavazza
,
J. Phys.: Condens. Matter
30
,
395901
(
2018
).
23.
M.
Wen
,
S. M.
Whalen
,
R. S.
Elliott
, and
E. B.
Tadmor
,
Modell. Simul. Mater. Sci. Eng.
23
,
074008
(
2015
).
25.
E. B.
Tadmor
,
R. S.
Elliott
, and
D. S.
Karls
, https://openkim/properties.
27.
M. S.
Daw
,
S. M.
Foiles
, and
M. I.
Baskes
,
Mater. Sci. Rep.
9
,
251
(
1993
).
28.
M.
Reddy
,
API Design for C++
, 1st ed. (
Morgan Kaufmann
,
Burlington, MA
,
2011
).
30.

For HPC environments, Singularity images can be constructed from Docker images.

31.
See https://rsync.samba.org for more information on the “rsync” file synchronization utility.
32.
See https://www.tornadoweb.org for more information on the Tornado web server.
33.
See https://www.mongodb.com for more information on the MongoDB database application.
34.
See https://www.sqlite.org for more information on the SQLite database application.
35.
A.
Solem
 et al., “
Celery distributed task queue
,” www.celeryproject.org.
36.
See https://www.rabbitmq.com for more information on the RabbitMQ message broker.
37.
Currently, RabbitMQ features native support only for AMQP version 0.9.1, employed here.
38.

There are only two parts of the process shown in Fig. 2 that the Web App is aware of: (1) that a new item has been submitted, at which point it notifies the Gateway’s control API in step 1; (2) it periodically checks to see if new results or errors have been uploaded by the Gateway by scanning the contents of some of its directories. This loose coupling obviates the need to deal with synchronization between the Web App and the Gateway that would otherwise be necessary.

39.

Note that the KIM-property python package (https://github.com/openkim/kim-property) can be used to create and write property instances. A native implementation in LAMMPS is also available.

40.

Strictly speaking, what is listed are lineages of Tests, which encompass all versions of that Test. The dependency is always taken to correspond to the latest existing version in that lineage.

41.

This is applicable in the event where a new version of an existing Test is uploaded, which forces its downstream dependents to be rerun. The reason is that jobs associated with the downstream dependents being removed from the list could otherwise eventually be run twice when downstream resolution is performed on the Test Results of jobs associated with the others. However, this mechanism can fail if more complicated structures exist in the dependency graph. A point of future work is to address this shortcoming with a global graph traversal method, e.g. a topological sorting algorithm, while taking care not to needlessly sequentialize jobs in independent branches.

42.
See https://openkim.org/compare for to use the model comparison tool.
43.
D. S.
Karls
, “
Transferability of empirical potentials and the knowledgebase of interatomic models
,” Ph.D. thesis,
University of Minnesota
,
Minneapolis, MN, USA
,
2016
.
44.
V. V.
Bulatov
, private communication (
2020
).
45.
L. A.
Zepeda-Ruiz
,
A.
Stukowski
,
T.
Oppelstrup
,
N.
Bertin
,
N. R.
Barton
,
R.
Freitas
, and
V. V.
Bulatov
, “
Metal hardening in atomistic detail
,” arXiv:1909.02030 [cond-mat.mtrl-sci] (
2019
).
46.
L. A.
Zepeda-Ruiz
,
A.
Stukowski
,
T.
Oppelstrup
, and
V. V.
Bulatov
,
Nature
550
,
492
(
2017
).
47.
J. R.
Rice
,
G. E.
Beltz
, and
Y.
Sun
,
J. Mech. Phys. Solids
40
,
239
(
1992
).
48.
E. B.
Tadmor
and
S.
Hai
,
J. Mech. Phys. Solids
51
,
765
(
2003
).
49.
Y.
Mishin
, “
EAM potential (LAMMPS cubic hermite tabulation) for Cu developed by Mishin, Mehl, and Papaconstantopoulos (2001) v005
,” OpenKIM, (
2018
).
50.
R. S.
Elliott
, “
EAM model driver for tabulated potentials with cubic Hermite spline interpolation as used in LAMMPS v005
,” OpenKIM, (
2018
).
51.
Y.
Mishin
,
M. J.
Mehl
,
D. A.
Papaconstantopoulos
,
A. F.
Voter
, and
J. D.
Kress
,
Phys. Rev. B
63
,
224106
(
2001
).
52.
K. M. D.
Sweeney
and
D.
Thain
, in
Proceedings of the 9th Workshop on Scientific Cloud Computing, ScienceCloud’18
(
Association for Computing Machinery
,
New York, NY, USA
,
2018
).

Supplementary Material

You do not currently have access to this content.