The determination of the most stable structures of metal clusters supported at solid surfaces by computer simulations represents a formidable challenge due to the complexity of the potential-energy surface. Here, we combine a high-dimensional neural network potential, which allows us to predict the energies and forces of a large number of structures with first-principles accuracy, with a global optimization scheme employing genetic algorithms. This very efficient setup is used to identify the global minima and low-energy local minima for a series of copper clusters containing between four and ten atoms adsorbed at the ZnO(101¯0) surface. A series of structures with common structural features resembling the Cu(111) and Cu(110) surfaces at the metal-oxide interface has been identified, and the geometries of the emerging clusters are characterized in detail. We demonstrate that the frequently employed approximation of a frozen substrate surface in global optimization can result in missing the most relevant structures.

1.
B. C.
Gates
, “
Supported metal clusters: Synthesis, structure, and catalysis
,”
Chem. Rev.
95
,
511
522
(
1995
).
2.
A. K.
Santra
and
D. W.
Goodman
, “
Oxide-supported metal clusters: Models for heterogeneous catalysts
,”
J. Phys.: Condens. Matter
15
,
R31
R62
(
2002
).
3.
Z. L.
Wang
, “
Zinc oxide nanostructures: Growth, properties and applications
,”
J. Phys.: Condens. Matter
16
,
R829
R858
(
2004
).
4.
U.
Heiz
and
E. L.
Bullock
, “
Fundamental aspects of catalysis on supported metal clusters
,”
J. Mater. Chem.
14
,
564
577
(
2004
).
5.
W.
Yu
,
M. D.
Porosoff
, and
J. G.
Chen
, “
Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts
,”
Chem. Rev.
112
,
5780
5817
(
2012
).
6.
I.
Cabria
,
M. J.
López
, and
J. A.
Alonso
, “
Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene
,”
Phys. Rev. B
81
,
035403
(
2010
).
7.
R.
Robles
and
S. N.
Khanna
, “
Oxidation of Pdn (n = 1–7, 10) clusters supported on alumina/NiAl(110)
,”
Phys. Rev. B
82
,
085428
(
2010
).
8.
Y.
Tang
,
Z.
Yang
, and
X.
Dai
, “
A theoretical simulation on the catalytic oxidation of CO on Pt/graphene
,”
Phys. Chem. Chem. Phys.
14
,
16566
16572
(
2012
).
9.
U.
Heiz
,
F.
Vanolli
,
L.
Trento
, and
W.-D.
Schneider
, “
Chemical reactivity of size-selected supported clusters: An experimental setup
,”
Rev. Sci. Instrum.
68
,
1986
1994
(
1997
).
10.
G.
Haas
,
A.
Menck
,
H.
Brune
,
J. V.
Barth
,
J. A.
Venables
, and
K.
Kern
, “
Nucleation and growth of supported clusters at defect sites: Pd/MgO(001)
,”
Phys. Rev. B
61
,
11105
11108
(
2000
).
11.
A.
Yamaguchi
and
E.
Iglesia
, “
Catalytic activation and reforming of methane on supported palladium clusters
,”
J. Catal.
274
,
52
63
(
2010
).
12.
S.
Peters
,
S.
Peredkov
,
M.
Neeb
,
W.
Eberhardt
, and
M.
Al-Hada
, “
Size-dependent XPS spectra of small supported Au-clusters
,”
Surf. Sci.
608
,
129
134
(
2013
).
13.
M.
Bowker
,
R. A.
Hadden
,
H.
Houghton
,
J. N. K.
Hyland
, and
K. C.
Waugh
, “
The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts
,”
J. Catal.
109
,
263
273
(
1988
).
14.
M.
Saito
,
T.
Fujitani
,
M.
Takeuchi
, and
T.
Watanabe
, “
Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen
,”
Appl. Catal. A: Gen. Chem. Eng. Catal.
138
,
311
318
(
1996
).
15.
S.
,
H.
Silva
,
L.
Brandão
,
J. M.
Sousa
, and
A.
Mendes
, “
Catalysts for methanol steam reforming—A review
,”
Appl. Catal. B: Environ.
99
,
43
57
(
2010
).
16.
S. A.
French
,
A. A.
Sokol
,
C. R. A.
Catlow
, and
P.
Sherwood
, “
The growth of copper clusters over ZnO: The competition between planar and polyhedral clusters
,”
J. Phys. Chem. C
112
,
7420
7430
(
2008
).
17.
Y.-T.
Cheng
,
T.
Liang
,
X.
Nie
,
K.
Choudhary
,
S. R.
Phillpot
,
A.
Asthagiri
, and
S. B.
Sinnott
, “
Cu cluster deposition on ZnO (101¯0): Morphology and growth mode predicted from molecular dynamics simulations
,”
Surf. Sci.
621
,
109
116
(
2014
).
18.
N.
Artrith
,
B.
Hiller
, and
J.
Behler
, “
Neural network potentials for metals and oxides—First applications to copper clusters at zinc oxide
,”
Phys. Status Solidi B
250
,
1191
1203
(
2013
).
19.
M.
Hellström
and
J.
Behler
, “
Structure of aqueous NaOH solutions: Insights from neural-network-based molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
19
,
82
96
(
2016
).
20.
D.
Mora-Fonz
,
T.
Lazauskas
,
S. M.
Woodley
,
S. T.
Bromley
,
C. R. A.
Catlow
, and
A. A.
Sokol
, “
Development of interatomic potentials for supported nanoparticles: The Cu/ZnO case
,”
J. Phys. Chem. C
121
,
16831
16844
(
2017
).
21.
O.
Dulub
,
L. A.
Boatner
, and
U.
Diebold
, “
STM study of Cu growth on the ZnO(101¯0) surface
,”
Surf. Sci.
504
,
271
281
(
2002
).
22.
L. V.
Koplitz
,
O.
Dulub
, and
U.
Diebold
, “
STM study of copper growth on ZnO(0001)-Zn and ZnO(0001¯)-O surfaces
,”
J. Phys. Chem. B
107
,
10583
10590
(
2003
).
23.
M.
Kroll
and
U.
Köhler
, “
Small Cu-clusters on ZnO(0001)–Zn: Nucleation and annealing behavior
,”
Surf. Sci.
601
,
2182
2188
(
2007
).
24.
M.
Behrens
,
F.
Studt
,
I.
Kasatkin
,
S.
Kühl
,
M.
Hävecker
,
F.
Abild-Pedersen
,
S.
Zander
,
F.
Girgsdies
,
P.
Kurr
,
B.-L.
Kniep
,
M.
Tovar
,
R. W.
Fischer
,
J. K.
Nørskov
, and
R.
Schlögl
, “
The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts
,”
Science
336
,
893
897
(
2012
).
25.
S.
Kuld
,
M.
Thorhauge
,
H.
Falsig
,
C. F.
Elkjaer
,
S.
Helveg
,
I.
Chorkendorff
, and
J.
Sehested
, “
Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis
,”
Science
352
,
969
974
(
2016
).
26.
S.
Kattel
,
P. J.
Ramírez
,
J. G.
Chen
,
J. A.
Rodriguez
, and
P.
Liu
, “
Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts
,”
Science
355
,
1296
1299
(
2017
).
27.
X. W.
Zhou
,
H. N. G.
Wadley
,
J.-S.
Filhol
, and
M. N.
Neurock
, “
Modified charge transfer–embedded atom method potential for metal/metal oxide systems
,”
Phys. Rev. B
69
,
035402
(
2004
).
28.
A. C. T.
van Duin
,
V. S.
Bryantsev
,
M. S.
Diallo
,
W. A.
Goddard
 III
,
O.
Rahaman
,
D. J.
Doren
,
D.
Raymand
, and
K.
Hermansson
, “
Development and validation of a reaxff reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases
,”
J. Phys. Chem. A
114
,
9507
(
2010
).
29.
C. M.
Handley
and
P. L. A.
Popelier
, “
Potential energy surfaces fitted by artificial neural networks
,”
J. Phys. Chem. A
114
,
3371
3383
(
2010
).
30.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
31.
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
, “
Machine learning force fields: Construction, validation, and outlook
,”
J. Phys. Chem. C
121
,
511
522
(
2017
).
32.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
, “
Neural network models of potential energy surfaces
,”
J. Chem. Phys.
103
,
4129
4137
(
1995
).
33.
S.
Lorenz
,
A.
Groß
, and
M.
Scheffler
, “
Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
,”
Chem. Phys. Lett.
395
,
210
215
(
2004
).
34.
J.
Behler
,
S.
Lorenz
, and
K.
Reuter
, “
Representing molecule-surface interactions with symmetry-adapted neural networks
,”
J. Chem. Phys.
127
,
014705
(
2007
).
35.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
36.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
37.
B.
Jiang
and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces
,”
J. Chem. Phys.
139
,
054112
(
2013
).
38.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
39.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
40.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
41.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
42.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
43.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
44.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
45.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
46.
N.
Artrith
and
J.
Behler
, “
High-dimensional neural network potentials for metal surfaces: A prototype study for copper
,”
Phys. Rev. B
85
,
045439
(
2012
).
47.
J.
Weinreich
,
A.
Römer
,
M. L.
Paleico
, and
J.
Behler
, “
Properties of alpha-brass nanoparticles. 1. Neural network potential energy surface
,”
J. Phys. Chem. C
124
,
12682
12695
(
2020
).
48.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
49.
S.
Kondati Natarajan
and
J.
Behler
, “
Self-diffusion of surface defects at copper-water interfaces
,”
J. Phys. Chem. C
121
,
4368
4383
(
2017
).
50.
V.
Quaranta
,
M.
Hellström
, and
J.
Behler
, “
Proton transfer mechanisms at the Water-ZnO interface: The role of presolvation
,”
J. Phys. Chem. Lett.
8
,
1476
(
2017
).
51.
Z.
Michalewicz
and
C. Z.
Janikow
, “
Genetic algorithms for numerical optimization
,”
Stat. Comput.
1
,
75
91
(
1991
).
52.
D. M.
Deaven
and
K. M.
Ho
, “
Molecular geometry optimization with a genetic algorithm
,”
Phys. Rev. Lett.
75
,
288
291
(
1995
).
53.
E. L.
Kolsbjerg
,
A. A.
Peterson
, and
B.
Hammer
, “
Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
,”
Phys. Rev. B
97
,
195424
(
2018
).
54.
P. C.
Jennings
,
S.
Lysgaard
,
J. S.
Hummelshøj
,
T.
Vegge
, and
T.
Bligaard
, “
Genetic algorithms for computational materials discovery accelerated by machine learning
,”
npj Comput. Mater.
5
,
1
6
(
2019
).
55.
Q.
Wan
,
F.
Wei
,
Y.
Wang
,
F.
Wang
,
L.
Zhou
,
S.
Lin
,
D.
Xie
, and
H.
Guo
, “
Single atom detachment from Cu clusters, and diffusion and trapping on CeO2(111): Implications in Ostwald ripening and atomic redispersion
,”
Nanoscale
10
,
17893
17901
(
2018
).
56.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Networks
4
,
251
257
(
1991
).
57.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
58.
J.
Behler
, “
Representing potential energy surfaces by high-dimensional neural network potentials
,”
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
59.
P. B.
Jensen
,
S.
Lysgaard
,
U. J.
Quaade
, and
T.
Vegge
, “
Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms
,”
Phys. Chem. Chem. Phys.
16
,
19732
19740
(
2014
).
60.
E.
Bozkurt
,
M. A. S.
Perez
,
R.
Hovius
,
N. J.
Browning
, and
U.
Rothlisberger
, “
Genetic algorithm based design and experimental characterization of a highly thermostable metalloprotein
,”
J. Am. Chem. Soc.
140
,
4517
4521
(
2018
).
61.
L. B.
Vilhelmsen
and
B.
Hammer
, “
Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory
,”
Phys. Rev. Lett.
108
,
126101
(
2012
).
62.
L. B.
Vilhelmsen
and
B.
Hammer
, “
Identification of the catalytic site at the interface Perimeter of Au clusters on rutile TiO2(110)
,”
ACS Catal.
4
,
1626
1631
(
2014
).
63.
P.
Huang
,
Y.
Jiang
,
T.
Liang
,
E.
Wu
,
J.
Li
, and
J.
Hou
, “
Structural exploration of AuxM-(M = Si, Ge, Sn; x = 9–12) clusters with a revised genetic algorithm
,”
RSC Adv.
9
,
7432
7439
(
2019
).
64.
F.
Buendía
,
J. A.
Vargas
,
R. L.
Johnston
, and
M. R.
Beltrán
, “
Study of the stability of small AuRh clusters found by a genetic algorithm methodology
,”
Comput. Theor. Chem.
1119
,
51
58
(
2017
).
65.
S.
Heydariyan
,
M. R.
Nouri
,
M.
Alaei
,
Z.
Allahyari
, and
T. A.
Niehaus
, “
New candidates for the global minimum of medium-sized silicon clusters: A hybrid DFTB/DFT genetic algorithm applied to Sin, n = 8–80
,”
J. Chem. Phys.
149
,
074313
(
2018
).
66.
D. J.
Wales
and
J. P. K.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
67.
L. B.
Vilhelmsen
and
B.
Hammer
, “
A genetic algorithm for first principles global structure optimization of supported nano structures
,”
J. Chem. Phys.
141
,
044711
(
2014
).
68.
G. G.
Rondina
and
J. L. F.
Da Silva
, “
Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles
,”
J. Chem. Inf. Model.
53
,
2282
2298
(
2013
).
69.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
70.
S.
Goedecker
, “
Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
,”
J. Chem. Phys.
120
,
9911
9917
(
2004
).
71.
L. B.
Vilhelmsen
,
K. S.
Walton
, and
D. S.
Sholl
, “
Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74
,”
J. Am. Chem. Soc.
134
,
12807
12816
(
2012
).
72.
R. L.
Johnston
, “
Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries
,”
Dalton Trans.
,
4193
4207
(
2003
).
73.
J. M.
Rahm
and
P.
Erhart
, “
Beyond magic numbers: Atomic scale equilibrium nanoparticle shapes for any size
,”
Nano Lett.
17
,
5775
5781
(
2017
).
74.
M. L.
Paleico
and
J.
Behler
, “
A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo
,”
J. Chem. Phys.
152
,
094109
(
2020
).
75.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
76.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
77.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
78.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
79.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
80.
G.
Kresse
and
J.
Hafner
, “
Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
,”
J. Phys.: Condens. Matter
6
,
8245
8257
(
1994
).
81.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
82.
V.
Quaranta
,
J.
Behler
, and
M.
Hellström
, “
Structure and dynamics of the liquid–water/zinc-oxide interface from machine learning potential simulations
,”
J. Phys. Chem. C
123
,
1293
1304
(
2019
).
83.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
, “
How van der Waals interactions determine the unique properties of water
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
(
2016
).
84.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
85.
A.
Tkatchenko
,
J. R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
86.
T.
Bučko
,
S.
Lebègue
,
J. G.
Ángyán
, and
J.
Hafner
, “
Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning
,”
J. Chem. Phys.
141
,
034114
(
2014
).
87.
J.
Antony
and
S.
Grimme
, “
Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules
,”
Phys. Chem. Chem. Phys.
8
,
5287
5293
(
2006
).
88.
D. A.
Kofke
and
E. D.
Glandt
, “
Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble
,”
Mol. Phys.
64
,
1105
1131
(
1988
).
89.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
, “
Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
,”
J. Chem. Phys.
148
,
241730
(
2018
).
90.
M.
Eckhoff
and
J.
Behler
, “
From molecular fragments to the bulk: Development of a neural network potential for MOF-5
,”
J. Chem. Theory Comput.
15
,
3793
3809
(
2019
).
91.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Programm.
45
,
503
528
(
1989
).
92.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dulak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
93.
M.
Cui
,
H.
Lu
,
H.
Jiang
,
Z.
Cao
, and
X.
Meng
, “
Phase diagram of continuous binary nanoalloys: Size, shape, and segregation effects
,”
Sci. Rep.
7
,
41990
(
2017
).
94.
A.
Singraber
,
J.
Behler
, and
C.
Dellago
, “
Library-based LAMMPS implementation of high-dimensional neural network potentials
,”
J. Chem. Theory Comput.
15
,
1827
1840
(
2019
).
95.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
96.
D. R.
Lide
,
Handbook of Chemistry and Physics
, 89th ed. (
CRC Press
,
2009
).
97.
B.
Meyer
and
D.
Marx
, “
Density-functional study of the structure and stability of ZnO surfaces
,”
Phys. Rev. B
67
,
035403
(
2003
).
98.
C. R.
Henry
, “
Morphology of supported nanoparticles
,”
Prog. Surf. Sci.
80
,
92
116
(
2005
).
99.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
(
2000
).
100.
M.
Eckhoff
,
D.
Schebarchov
, and
D. J.
Wales
, “
Structure and thermodynamics of metal clusters on atomically smooth substrates
,”
J. Phys. Chem. Lett.
8
,
5402
5407
(
2017
).
101.
G.
Wulff
, “
Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen
,”
Z. Kristallogr. - Cryst. Mater.
34
,
449
530
(
1901
).
102.
E.
Ringe
,
R. P.
Van Duyne
, and
L. D.
Marks
, “
Wulff construction for alloy nanoparticles
,”
Nano Lett.
11
,
3399
3403
(
2011
).
103.
S. J.
Tauster
, “
Strong metal-support interactions
,”
Acc. Chem. Res.
20
,
389
394
(
1987
).
104.
C.-J.
Pan
,
M.-C.
Tsai
,
W.-N.
Su
,
J.
Rick
,
N. G.
Akalework
,
A. K.
Agegnehu
,
S.-Y.
Cheng
, and
B.-J.
Hwang
, “
Tuning and exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis
,”
J. Taiwan Inst. Chem. Eng.
74
,
154
186
(
2017
).
105.
W. T.
Figueiredo
,
G. B.
Della Mea
,
M.
Segala
,
D. L.
Baptista
,
C.
Escudero
,
V.
Pérez-Dieste
, and
F.
Bernardi
, “
Understanding the strong metal–support interaction (SMSI) effect in CuxNi1−x/CeO2 (0 < x < 1) nanoparticles for enhanced catalysis
,”
ACS Appl. Nano Mater.
2
,
2559
2573
(
2019
).
106.
D. S.
Koda
,
F.
Bechstedt
,
M.
Marques
, and
L. K.
Teles
, “
Coincidence lattices of 2D crystals: Heterostructure predictions and applications
,”
J. Phys. Chem. C
120
,
10895
10908
(
2016
).
107.
M.
Mavrikakis
,
B.
Hammer
, and
J. K.
Nørskov
, “
Effect of strain on the reactivity of metal surfaces
,”
Phys. Rev. Lett.
81
,
2819
2822
(
1998
).
108.
K.
Amakawa
,
L.
Sun
,
C.
Guo
,
M.
Hävecker
,
P.
Kube
,
I. E.
Wachs
,
S.
Lwin
,
A. I.
Frenkel
,
A.
Patlolla
,
K.
Hermann
,
R.
Schlögl
, and
A.
Trunschke
, “
How strain affects the reactivity of surface metal oxide catalysts
,”
Angew. Chem., Int. Ed.
52
,
13553
13557
(
2013
).
109.
M. A.
Bissett
,
S.
Konabe
,
S.
Okada
,
M.
Tsuji
, and
H.
Ago
, “
Enhanced chemical reactivity of graphene induced by mechanical strain
,”
ACS Nano
7
,
10335
10343
(
2013
).
110.
W. R.
Tyson
and
W. A.
Miller
, “
Surface free energies of solid metals: Estimation from liquid surface tension measurements
,”
Surf. Sci.
62
,
267
276
(
1977
).
111.
R.
Tran
,
Z.
Xu
,
B.
Radhakrishnan
,
D.
Winston
,
W.
Sun
,
K. A.
Persson
, and
S. P.
Ong
, “
Surface energies of elemental crystals
,”
Sci. Data
3
,
160080
(
2016
).
112.
M.
Iannuzzi
,
A.
Laio
, and
M.
Parrinello
, “
Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics
,”
Phys. Rev. Lett.
90
,
238302
(
2003
).
113.
C. B.
Barber
,
D. P.
Dobkin
, and
H.
Huhdanpaa
, “
The quickhull algorithm for convex hulls
,”
ACM Trans. Math. Software
22
,
469
483
(
1996
).
114.
J. B. A.
Davis
,
S. L.
Horswell
, and
R. L.
Johnston
, “
Application of a parallel genetic algorithm to the global optimization of gas-phase and supported gold–iridium sub-nanoalloys
,”
J. Phys. Chem. C
120
,
3759
3765
(
2016
).
115.
H. A.
Hussein
,
J. B. A.
Davis
, and
R. L.
Johnston
, “
DFT global optimisation of gas-phase and MgO-supported sub-nanometre AuPd clusters
,”
Phys. Chem. Chem. Phys.
18
,
26133
26143
(
2016
).
116.
A. S.
Bazhenov
and
K.
Honkala
, “
Globally optimized equilibrium shapes of zirconia-supported Rh and Pt nanoclusters: Insights into site assembly and reactivity
,”
J. Phys. Chem. C
123
,
7209
7216
(
2019
).
117.
J.
Engel
,
S.
Francis
, and
A.
Roldan
, “
The influence of support materials on the structural and electronic properties of gold nanoparticles—A DFT study
,”
Phys. Chem. Chem. Phys.
21
,
19011
19025
(
2019
).

Supplementary Material

You do not currently have access to this content.