Water molecules adsorbed on noble metal surfaces are of fundamental interest in surface science, in heterogeneous catalysis, and as a model for the metal/water interface. Herein, we analyze 28 water structures adsorbed on five noble metal surfaces (Cu, Ag, Au, Pd, and Pt) via density functional theory and energy decomposition analysis based on the block localized wave function technique. Structures, ranging from monomers to ice adlayers, reveal that the charge transfer from water to the surface is nearly independent from the charge transfer between the water molecules, while the polarization energies are cooperative. Dense water–water networks with small surface dipoles, such as the 39×39 unit cell [experimentally observed on Pt(111)], are favored compared to the highly ordered and popular Hup and Hdown phases. The second main result of our study is that the many-body interactions, which stabilize the water assemblies on the metal surfaces, are dominated by the polarization energies, with the charge transfer scaling with the polarization energies. Hence, if an empirical model could be found that reproduces the polarization energies, the charge transfer could be predicted as well, opening exciting perspectives for force field development.

1.
D. L.
Doering
and
T. E.
Madey
, “
The adsorption of water on clean and oxygen-dosed Ru(011)
,”
Surf. Sci.
123
,
305
337
(
1982
).
2.
A.
Glebov
,
A. P.
Graham
,
A.
Menzel
, and
J. P.
Toennies
, “
Orientational ordering of two-dimensional ice on Pt(111)
,”
J. Chem. Phys.
106
,
9382
9385
(
1997
).
3.
S.
Nie
,
P. J.
Feibelman
,
N. C.
Bartelt
, and
K.
Thürmer
, “
Pentagons and heptagons in the first water layer on Pt(111)
,”
Phys. Rev. Lett.
105
,
026102
(
2010
).
4.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
, “
A molecular perspective of water at metal interfaces
,”
Nat. Mater.
11
,
667
674
(
2012
).
5.
H.
Ogasawara
,
B.
Brena
,
D.
Nordlund
,
M.
Nyberg
,
A.
Pelmenschikov
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Structure and bonding of water on Pt(111)
,”
Phys. Rev. Lett.
89
,
276102
(
2002
).
6.
J.
Rossmeisl
,
J. K.
Nørskov
,
C. D.
Taylor
,
M. J.
Janik
, and
M.
Neurock
, “
Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111)
,”
J. Phys. Chem. B
110
,
21833
21839
(
2006
).
7.
S.
Schnur
and
A.
Groß
, “
Properties of metal–water interfaces studied from first principles
,”
New J. Phys.
11
,
125003
(
2009
).
8.
T.
Schiros
,
K. J.
Andersson
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
H.
Ogasawara
, “
Chemical bonding of water to metal surfaces studied with core-level spectroscopies
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
85
98
(
2010
).
9.
J.-S.
Filhol
and
M.-L.
Doublet
, “
An ab initio study of surface electrochemical disproportionation: The case of a water monolayer adsorbed on a Pd(111) surface
,”
Electrocatalysis
202
,
87
97
(
2013
).
10.
P.
Vassilev
,
R. A.
van Santen
, and
M. T. M.
Koper
, “
Ab initio studies of a water layer at transition metal surfaces
,”
J. Chem. Phys.
122
,
054701
(
2005
).
11.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
7726
(
2016
).
12.
S. K.
Desai
,
V.
Pallassana
, and
M.
Neurock
, “
A periodic density functional theory analysis of the effect of water molecules on deprotonation of acetic acid over Pd(111)
,”
J. Phys. Chem. B
105
,
9171
9182
(
2001
).
13.
J.-S.
Filhol
and
M.
Neurock
, “
Elucidation of the electrochemical activation of water over Pd by first principles
,”
Angew. Chem., Int. Ed.
45
,
402
406
(
2006
).
14.
E.
Skúlason
,
G. S.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
J.
Greeley
,
H.
Jónsson
, and
J. K.
Nørskov
, “
Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode
,”
Phys. Chem. Chem. Phys.
9
,
3241
3250
(
2007
).
15.
F.
Tian
,
R.
Jinnouchi
, and
A. B.
Anderson
, “
How potentials of zero charge and potentials for water oxidation to OH(ads) on Pt(111) electrodes vary with coverage
,”
J. Phys. Chem. C
113
,
17484
17492
(
2009
).
16.
J.
Hussain
,
H.
Jónsson
, and
E.
Skúlason
, “
Calculations of product selectivity in electrochemical CO2 reduction
,”
ACS Catal.
8
,
5240
5249
(
2018
).
17.
K.
Mathew
,
V. S. C.
Kolluru
,
S.
Mula
,
S. N.
Steinmann
, and
R. G.
Hennig
, “
Implicit self-consistent electrolyte model in plane-wave density-functional theory
,”
J. Chem. Phys.
151
,
234101
(
2019
).
18.
S. N.
Steinmann
,
P.
Sautet
, and
C.
Michel
, “
Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models
,”
Phys. Chem. Chem. Phys.
18
,
31850
31861
(
2016
).
19.
D. D.
Hibbitts
,
B. T.
Loveless
,
M.
Neurock
, and
E.
Iglesia
, “
Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts
,”
Angew. Chem., Int. Ed.
52
,
12273
12278
(
2013
).
20.
B.
Schweitzer
,
S. N.
Steinmann
, and
C.
Michel
, “
Can microsolvation effects be estimated from vacuum computations? A case-study of alcohol decomposition at the H2O/Pt(111) interface
,”
Phys. Chem. Chem. Phys.
21
,
5368
5377
(
2019
).
21.
S. N.
Steinmann
,
R.
Ferreira De Morais
,
A. W.
Götz
,
P.
Fleurat-Lessard
,
M.
Iannuzzi
,
P.
Sautet
, and
C.
Michel
, “
Force field for water over Pt(111): Development, assessment, and comparison
,”
J. Chem. Theory Comput.
14
,
3238
3251
(
2018
).
22.
J.
Carrasco
,
A.
Michaelides
, and
M.
Scheffler
, “
Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces
,”
J. Chem. Phys.
130
,
184707
(
2009
).
23.
A.
Michaelides
,
V. A.
Ranea
,
P. L.
de Andres
, and
D. A.
King
, “
General model for water monomer adsorption on close-packed transition and noble metal surfaces
,”
Phys. Rev. Lett.
90
,
216102
(
2003
).
24.
T.
Schiros
,
H.
Ogasawara
,
L.-Å.
Näslund
,
K. J.
Andersson
,
J.
Ren
,
S.
Meng
,
G. S.
Karlberg
,
M.
Odelius
,
A.
Nilsson
, and
L. G. M.
Pettersson
, “
Cooperativity in surface bonding and hydrogen bonding of water and hydroxyl at metal surfaces
,”
J. Phys. Chem. C
114
,
10240
10248
(
2010
).
25.
J.
Carrasco
,
J.
Klimeš
, and
A.
Michaelides
, “
The role of van der Waals forces in water adsorption on metals
,”
J. Chem. Phys.
138
,
024708
(
2013
).
26.
J.
Carrasco
,
B.
Santra
,
J.
Klimeš
, and
A.
Michaelides
, “
To wet or not to wet? Dispersion forces tip the balance for water ice on metals
,”
Phys. Rev. Lett.
106
,
026101
(
2011
).
27.
Y.
Mo
,
J.
Gao
, and
S. D.
Peyerimhoff
, “
Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach
,”
J. Chem. Phys.
112
,
5530
5538
(
2000
).
28.
R. Z.
Khaliullin
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals
,”
J. Chem. Phys.
128
,
184112
(
2008
).
29.
S. N.
Steinmann
,
P.
Vogel
,
Y.
Mo
, and
C.
Corminboeuf
, “
The norbornene mystery revealed
,”
Chem. Commun.
47
,
227
229
(
2011
).
30.
H.
Elgabarty
,
R. Z.
Khaliullin
, and
T. D.
Kühne
, “
Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments
,”
Nat. Commun.
6
,
8318
(
2015
).
31.
P. H. T.
Philipsen
and
E. J.
Baerends
, “
Role of the Fermi surface in adsorbate-metal interactions: An energy decomposition analysis
,”
J. Phys. Chem. B
110
,
12470
12479
(
2006
).
32.
L.
Pecher
,
S.
Laref
,
M.
Raupach
, and
R.
Tonner
, “
Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry
,”
Angew. Chem., Int. Ed.
56
,
15150
15154
(
2017
).
33.
R.
Staub
,
M.
Iannuzzi
,
R. Z.
Khaliullin
, and
S. N.
Steinmann
, “
Energy decomposition analysis for metal surface-adsorbate interactions by block localized wave functions
,”
J. Chem. Theory Comput.
15
,
265
275
(
2019
).
34.
R. G.
Parr
,
P. W.
Ayers
, and
R. F.
Nalewajski
, “
What is an atom in a molecule?
,”
J. Phys. Chem. A
109
,
3957
3959
(
2005
).
35.
R. F. W.
Bader
, “
Letter to the editor: Quantum mechanics, or orbitals?
,”
Int. J. Quantum Chem.
94
,
173
177
(
2003
).
36.
L.
Zhao
,
M.
Hermann
,
W. H. E.
Schwarz
, and
G.
Frenking
, “
The Lewis electron-pair bonding model: Modern energy decomposition analysis
,”
Nat. Rev. Chem.
3
,
48
63
(
2019
).
37.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preubeta
, “
On the use of local basis sets for localized molecular orbitals
,”
Theor. Chim. Acta
57
,
169
178
(
1980
).
38.
Y.
Mo
and
S. D.
Peyerimhoff
, “
Theoretical analysis of electronic delocalization
,”
J. Chem. Phys.
109
,
1687
1697
(
1998
).
39.
S. N.
Steinmann
,
D. F.
Jana
,
J. I.-C.
Wu
,
P. v. R.
Schleyer
,
Y.
Mo
, and
C.
Corminboeuf
, “
Direct assessment of electron delocalization using NMR chemical shifts
,”
Angew. Chem., Int. Ed.
48
,
9828
9833
(
2009
).
40.
O.
Demerdash
,
Y.
Mao
,
T.
Liu
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations
,”
J. Chem. Phys.
147
,
161721
(
2017
).
41.
R. Z.
Khaliullin
,
J.
VandeVondele
, and
J.
Hutter
, “
Efficient linear-scaling density functional theory for molecular systems
,”
J. Chem. Theory Comput.
9
,
4421
4427
(
2013
).
42.
A.
Martín Pendás
,
M. A.
Blanco
, and
E.
Francisco
, “
The nature of the hydrogen bond: A synthesis from the interacting quantum atoms picture
,”
J. Chem. Phys.
125
,
184112
(
2006
).
43.
E.
Arunan
,
G. R.
Desiraju
,
R. A.
Klein
,
J.
Sadlej
,
S.
Scheiner
,
I.
Alkorta
,
D. C.
Clary
,
R. H.
Crabtree
,
J. J.
Dannenberg
,
P.
Hobza
,
H. G.
Kjaergaard
,
A. C.
Legon
,
B.
Mennucci
, and
D. J.
Nesbitt
, “
Defining the hydrogen bond: An account (IUPAC technical report)
,”
Pure Appl. Chem.
83
,
1619
1636
(
2011
).
44.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
45.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Lochan
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals
,”
J. Phys. Chem. A
111
,
8753
8765
(
2007
).
46.
S. N.
Steinmann
,
C.
Corminboeuf
,
W.
Wu
, and
Y.
Mo
, “
Dispersion-corrected energy decomposition analysis for intermolecular interactions based on the BLW and dDXDM methods
,”
J. Phys. Chem. A
115
,
5467
5477
(
2011
).
47.
R. Z.
Khaliullin
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Electron donation in the water-water hydrogen bond
,”
Chem.-Eur. J.
15
,
851
855
(
2009
).
48.
P. R.
Horn
,
Y.
Mao
, and
M.
Head-Gordon
, “
Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals
,”
Phys. Chem. Chem. Phys.
18
,
23067
23079
(
2016
).
49.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
50.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
51.
J.
Klimes
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the van der Waals density functional
,”
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
52.
S.
Gautier
,
S. N.
Steinmann
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
, “
Molecular adsorption at Pt(111). How accurate are DFT functionals?
,”
Phys. Chem. Chem. Phys.
17
,
28921
28930
(
2015
).
53.
P.
Clabaut
,
P.
Fleurat-Lessard
,
C.
Michel
, and
S. N.
Steinmann
, “
Ten facets, one force field: The GAL19 force field for water–noble metal interfaces
,”
J. Chem. Theory Comput.
16
,
4565
(
2020
).
54.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
55.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
56.
P.
Wang
,
S. N.
Steinmann
,
G.
Fu
,
C.
Michel
, and
P.
Sautet
, “
Key role of anionic doping for H2 production from formic acid on Pd(111)
,”
ACS Catal.
7
,
1955
1959
(
2017
).
57.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
58.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
59.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
60.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
61.
J. R.
Rumptz
and
C. T.
Campbell
, “
Adhesion energies of solvent films to Pt(111) and Ni(111) surfaces by adsorption calorimetry
,”
ACS Catal.
9
,
11819
11825
(
2019
).
62.
W. R.
Tyson
and
W. A.
Miller
, “
Surface free energies of solid metals: Estimation from liquid surface tension measurements
,”
Surf. Sci.
62
,
267
276
(
1977
).
63.
J. J.
Mortensen
,
B.
Hammer
, and
J. K.
Nørskov
, “
Alkali promotion of N2 dissociation over Ru(0001)
,”
Phys. Rev. Lett.
80
,
4333
4336
(
1998
).
64.
S. N.
Steinmann
,
C.
Piemontesi
,
A.
Delachat
, and
C.
Corminboeuf
, “
Why are the interaction energies of charge-transfer complexes challenging for DFT?
,”
J. Chem. Theory Comput.
8
,
1629
1640
(
2012
).
65.
J. I.
Siepmann
and
M.
Sprik
, “
Influence of surface topology and electrostatic potential on water/electrode systems
,”
J. Chem. Phys.
102
,
511
524
(
1995
).
66.
F.
Iori
and
S.
Corni
, “
Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces
,”
J. Comput. Chem.
29
,
1656
1666
(
2008
).
67.
A. S.
Pensado
and
A. A. H.
Pádua
, “
Solvation and stabilization of metallic nanoparticles in ionic liquids
,”
Angew. Chem., Int. Ed.
50
,
8683
8687
(
2011
).
68.
D.
Golze
,
M.
Iannuzzi
,
M.-T.
Nguyen
,
D.
Passerone
, and
J.
Hutter
, “
Simulation of adsorption processes at metallic interfaces: An image charge augmented QM/MM approach
,”
J. Chem. Theory Comput.
9
,
5086
5097
(
2013
).
69.
S. N.
Steinmann
,
P.
Fleurat-Lessard
,
A. W.
Götz
,
C.
Michel
,
R.
Ferreira de Morais
, and
P.
Sautet
, “
Molecular mechanics models for the image charge, a comment on ‘including image charge effects in the molecular dynamics simulations of molecules on metal surfaces’
,”
J. Comput. Chem.
38
,
2127
2129
(
2017
).
70.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
71.
R.
Staub
and
S. N.
Steinmann
, “
Parameter-free coordination numbers for solutions and interfaces
,”
J. Chem. Phys.
152
,
024124
(
2020
).
72.
A. D.
Mackerell
,
M.
Feig
, and
C. L.
Brooks
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
1415
(
2004
).

Supplementary Material

You do not currently have access to this content.