We report threshold collision induced dissociation experiments on cationic pyrene clusters, for sizes n = 2–6. Fragmentation cross sections are recorded as a function of the collision energy and analyzed with a statistical model. This model can account for the dissociation cascades and provides values for the dissociation energies. These values, of the order of 0.7 eV–1 eV, are in excellent agreement with those previously derived from thermal evaporation. They confirm the charge resonance stability enhancement predicted by theoretical calculations. In addition, remarkable agreement is obtained with theoretical predictions for the two smaller sizes n = 2 and 3. For the larger sizes, the agreement remains good, although the theoretical values obtained for the most stable structures are systematically higher by 0.2 eV. This offset could be attributed to approximations in the calculations. Still, there is an indication in the results of an incomplete description of the role of isomerization and/or direct dissociation upon collisions. Finally, by-product clusters containing dehydrogenated species are found to dissociate at energies comparable to the non-dehydrogenated ones, which shows no evidence for covalent bonds within the clusters.

1.
A.
Léger
and
J. L.
Puget
, “
Identification of the ’unidentified’ IR emission features of interstellar dust?
,”
Astron. Astrophys.
137
,
L5
L8
(
1984
).
2.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
, “
Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - auto exhaust along the Milky Way
,”
Astrophys. J., Lett.
290
,
L25
L28
(
1985
).
3.
M.
Rapacioli
,
C.
Joblin
, and
P.
Boissel
, “
Spectroscopy of polycyclic aromatic hydrocarbons and very small grains in photodissociation regions
,”
Astron. Astrophys.
429
,
193
204
(
2005
).
4.
O.
Berné
,
C.
Joblin
,
Y.
Deville
,
J. D.
Smith
,
M.
Rapacioli
,
J. P.
Bernard
,
J.
Thomas
,
W.
Reach
, and
A.
Abergel
, “
Analysis of the emission of very small dust particles from Spitzer spectro-imagery data using blind signal separation methods
,”
Astron. Astrophys.
469
,
575
586
(
2007
).
5.
P.
Pilleri
,
J.
Montillaud
,
O.
Berné
, and
C.
Joblin
, “
Evaporating very small grains as tracers of the UV radiation field in photo-dissociation regions
,”
Astron. Astrophys.
542
,
A69
(
2012
).
6.
R.
Delaunay
,
M.
Gatchell
,
P.
Rousseau
,
A.
Domaracka
,
S.
Maclot
,
Y.
Wang
,
M. H.
Stockett
,
T.
Chen
,
L.
Adoui
,
M.
Alcamí
,
F.
Martín
,
H.
Zettergren
,
H.
Cederquist
, and
B. A.
Huber
, “
Molecular growth inside of polycyclic aromatic hydrocarbon clusters induced by ion collisions
,”
J. Phys. Chem. Lett.
6
,
1536
1542
(
2015
).
7.
T.
Chen
, “
Formation of covalently bonded polycyclic aromatic hydrocarbons in the interstellar medium
,”
Astrophys. J.
866
,
113
(
2018
).
8.
J.
Zhen
,
T.
Chen
, and
A. G. G. M.
Tielens
, “
Laboratory photochemistry of pyrene clusters: An efficient way to form large PAHs
,”
Astrophys. J.
863
,
128
(
2018
).
9.
M.
Rapacioli
,
F.
Calvo
,
C.
Joblin
,
P.
Parneix
,
D.
Toublanc
, and
F.
Spiegelman
, “
Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium
,”
Astron. Astrophys.
460
,
519
531
(
2006
).
10.
J.
Montillaud
and
C.
Joblin
, “
Absolute evaporation rates of non-rotating neutral polycyclic aromatic hydrocarbon clusters
,”
Astron. Astrophys.
567
,
A45
(
2014
).
11.
M.
Rapacioli
and
F.
Spiegelman
, “
Modelling singly ionized coronene clusters
,”
Eur. Phys. J. D
52
,
55
58
(
2009
).
12.
C.
Joblin
,
L.
Dontot
,
G. A.
Garcia
,
F.
Spiegelman
,
M.
Rapacioli
,
L.
Nahon
,
P.
Parneix
,
T.
Pino
, and
P.
Bréchignac
, “
Size effect in the ionization energy of PAH clusters
,”
J. Phys. Chem. Lett.
8
,
3697
3702
(
2017
).
13.
M.
Schmidt
,
A.
Masson
, and
C.
Bréchignac
, “
Coronene cluster experiments: Stability and thermodynamics
,”
Int. J. Mass Spectrom.
252
,
173
179
(
2006
).
14.
H. A. B.
Johansson
,
H.
Zettergren
,
A. I. S.
Holm
,
F.
Seitz
,
H. T.
Schmidt
,
P.
Rousseau
,
A.
Ławicki
,
M.
Capron
,
A.
Domaracka
,
E.
Lattouf
,
S.
Maclot
,
R.
Maisonny
,
B.
Manil
,
J.-Y.
Chesnel
,
L.
Adoui
,
B. A.
Huber
, and
H.
Cederquist
, “
Ionization and fragmentation of polycyclic aromatic hydrocarbon clusters in collisions with kev ions
,”
Phys. Rev. A
84
,
043201
(
2011
).
15.
S. O.
Baek
,
R. a.
Field
,
M. E.
Goldstone
,
P. W.
Kirk
,
J. N.
Lester
, and
R.
Perry
, “
A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior
,”
Water, Air, Soil Pollut.
60
,
279
300
(
1991
).
16.
C.-T.
Li
,
H.-K.
Zhuang
,
L.-T.
Hsieh
,
W.-J.
Lee
, and
M.-C.
Tsao
, “
PAH emission from the incineration of three plastic wastes
,”
Environ. Int.
27
,
61
67
(
2001
).
17.
M.
Blanchard
,
M.-J.
Teil
,
E.
Guigon
,
K.
Larcher-Tiphagne
,
D.
Ollivon
,
B.
Garban
, and
M.
Chevreuil
, “
Persistent toxic substance inputs to the river seine basin (France) via atmospheric deposition and urban sludge application
,”
Sci. Total Environ.
375
,
232
243
(
2007
), human activity and material fluxes in a regional river basin: The Seine River watershed Seine Special Issue.
18.
A.
Birgül
,
Y.
Tasdemir
, and
S. S.
Cindoruk
, “
Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler
,”
Atmos. Res.
101
,
341
353
(
2011
).
19.
A. D. P.
Netto
,
T. M.
Krauss
,
I. F.
Cunha
, and
E. C. P.
Rego
, “
PAHs in sd:polycyclic aromatic hydrocarbons levels in street dust in the central area of Niterói city, rj, Brazil
,”
Water, Air, Soil Pollut.
176
,
57
67
(
2006
).
20.
D. H.
Phillips
, “
Fifty years of benzo(a)pyrene
,”
Nature
303
,
468
472
(
1983
).
21.
T. M.
Penning
,
M. E.
Burczynski
,
C.-f.
Hung
,
K. D.
Mccoull
,
N. T.
Palackal
, and
L. S.
Tsuruda
, “
Hydrocarbon activation: Generation of reactive and redox active o -quinones
,”
Chem. Res. Toxicol.
12
,
1
18
(
1999
).
22.
M. M.
Pratt
,
K.
John
,
A. B.
MacLean
,
S.
Afework
,
D. H.
Phillips
, and
M. C.
Poirier
, “
Polycyclic aromatic hydrocarbon (PAH) exposure and DNA adduct semi-quantitation in archived human tissues
,”
Int. J. Environ. Res. Public Health
8
,
2675
2691
(
2011
).
23.
N. A.
Eaves
,
S. B.
Dworkin
, and
M. J.
Thomson
, “
The importance of reversibility in modeling soot nucleation and condensation processes
,”
Proc. Combust. Inst.
35
,
1787
1794
(
2015
).
24.
A.
Violi
and
S.
Izvekov
, “
Soot primary particle formation from multiscale coarse-grained molecular dynamics simulation
,”
Proc. Combust. Inst.
31
,
529
537
(
2007
).
25.
A.
D’Anna
,
M.
Sirignano
, and
J.
Kent
, “
A model of particle nucleation in premixed ethylene flames
,”
Combust. Flame
157
,
2106
2115
(
2010
).
26.
T. S.
Totton
,
A. J.
Misquitta
, and
M.
Kraft
, “
A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures
,”
Phys. Chem. Chem. Phys.
14
,
4081
4094
(
2012
).
27.
A.
Raj
,
M.
Sander
,
V.
Janardhanan
, and
M.
Kraft
, “
A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency
,”
Combust. Flame
157
,
523
534
(
2010
).
28.
Q.
Mao
,
A. C. T.
van Duin
, and
K. H.
Luo
, “
Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A reaxff molecular dynamics study
,”
Carbon
121
,
380
388
(
2017
).
29.
C.
Saggese
,
S.
Ferrario
,
J.
Camacho
,
A.
Cuoci
,
A.
Frassoldati
,
E.
Ranzi
,
H.
Wang
, and
T.
Faravelli
, “
Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame
,”
Combust. Flame
162
,
3356
3369
(
2015
).
30.
D.
Aubagnac-Karkar
,
A.
El Bakali
, and
P.
Desgroux
, “
Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method
,”
Combust. Flame
189
,
190
206
(
2018
).
31.
T. S.
Totton
,
D.
Chakrabarti
,
A. J.
Misquitta
,
M.
Sander
,
D. J.
Wales
, and
M.
Kraft
, “
Modelling the internal structure of nascent soot particles
,”
Combust. Flame
157
,
909
914
(
2010
).
32.
C. S.
Wang
,
N. C.
Bartelt
,
R.
Ragan
, and
K.
Thürmer
, “
Revealing the molecular structure of soot precursors
,”
Carbon
129
,
537
542
(
2018
).
33.
H.
Sabbah
,
L.
Biennier
,
S. J.
Klippenstein
,
I. R.
Sims
, and
B. R.
Rowe
, “
Exploring the role of PAHs in the formation of soot: Pyrene dimerization
,”
J. Phys. Chem. Lett.
1
,
2962
2967
(
2010
).
34.
E. M.
Adkins
,
J. A.
Giaccai
, and
J. H.
Miller
, “
Computed electronic structure of polynuclear aromatic hydrocarbon agglomerates
,”
Proc. Combust. Inst.
36
,
957
964
(
2017
).
35.
R.
Scholz
,
R.
Luschtinetz
,
G.
Seifert
,
T.
Jägeler-Hoheisel
,
C.
Körner
,
K.
Leo
, and
M.
Rapacioli
, “
Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained dftb and spectroscopic methods
,”
J. Phys.: Condens. Matter
25
,
473201
(
2013
).
36.
A.
Darghouth
,
M.
Casida
,
W.
Taouali
,
K.
Alimi
,
M.
Ljungberg
,
P.
Koval
,
D.
Sánchez-Portal
, and
D.
Foerster
, “
Assessment of density-functional tight-binding ionization potentials and electron affinities of molecules of interest for organic solar cells against first-principles gw calculations
,”
Computation
3
,
616
656
(
2015
).
37.
A. A. M. H. M.
Darghouth
,
G. C.
Correa
,
S.
Juillard
,
M. E.
Casida
,
A.
Humeniuk
, and
R.
Mitrić
, “
Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding
,”
J. Chem. Phys.
149
,
134111
(
2018
).
38.
S.
Zamith
,
M.-C.
Ji
,
J.-M.
L’Hermite
,
C.
Joblin
,
L.
Dontot
,
M.
Rapacioli
, and
F.
Spiegelman
, “
Thermal evaporation of pyrene clusters
,”
J. Chem. Phys.
151
,
194303
(
2019
).
39.
L.
Dontot
,
F.
Spiegelman
, and
M.
Rapacioli
, “
Structures and energetics of neutral and cationic pyrene clusters
,”
J. Phys. Chem. A
123
,
9531
9543
(
2019
).
40.
M.
Rapacioli
,
F.
Spiegelman
,
A.
Scemama
, and
A.
Mirtschink
, “
Modeling charge resonance in cationic molecular clusters: Combining DFT-tight binding with configuration interaction
,”
J. Chem. Theory Comput.
7
,
44
55
(
2011
).
41.
P. B.
Armentrout
,
K. M.
Ervin
, and
M. T.
Rodgers
, “
Statistical rate theory and kinetic energy-resolved ion chemistry: Theory and applications
,”
J. Phys. Chem. A
112
,
10071
10085
(
2008
).
42.
M. T.
Rodgers
and
P. B.
Armentrout
, “
Statistical modeling of competitive threshold collision-induced dissociation
,”
J. Chem. Phys.
109
,
1787
1800
(
1998
).
43.
P. B.
Armentrout
, “
Statistical modeling of sequential collision-induced dissociation thresholds
,”
J. Chem. Phys.
126
,
234302
(
2007
).
44.
F.
Chirot
,
S.
Zamith
,
P.
Labastie
, and
J.-M.
L’Hermite
, “
New device to study unimolecular cluster nucleation
,”
Rev. Sci. Instrum.
77
,
063108
(
2006
).
45.
I.
Braud
,
S.
Zamith
, and
J.-M.
L’Hermite
, “
A gas aggregation source for the production of heterogeneous molecular clusters
,”
Rev. Sci. Instrum.
88
,
043102
(
2017
).
46.
A. I. S.
Holm
,
H.
Zettergren
,
H. A. B.
Johansson
,
F.
Seitz
,
S.
Rosén
,
H. T.
Schmidt
,
A.
Ławicki
,
J.
Rangama
,
P.
Rousseau
,
M.
Capron
,
R.
Maisonny
,
L.
Adoui
,
A.
Méry
,
B.
Manil
,
B. A.
Huber
, and
H.
Cederquist
, “
Ions colliding with cold polycyclic aromatic hydrocarbon clusters
,”
Phys. Rev. Lett.
105
,
213401
(
2010
).
47.
P.
Rousseau
,
A.
Ławicki
,
A. I. S.
Holm
,
M.
Capron
,
R.
Maisonny
,
S.
Maclot
,
E.
Lattouf
,
H. A. B.
Johansson
,
F.
Seitz
,
A.
Méry
,
J.
Rangama
,
H.
Zettergren
,
S.
Rosén
,
H. T.
Schmidt
,
J.-Y.
Chesnel
,
A.
Domaracka
,
B.
Manil
,
L.
Adoui
,
H.
Cederquist
, and
B. A.
Huber
, “
Low-energy ions interacting with anthracene molecules and clusters
,” in
Proceedings of the Fifth International Conference on Elementary Processes in Atomic Systems Belgrade, Serbia, 21–25 June 2011
[
Nucl. Instrum. Methods Phys. Res., Sect. B
279
,
140
143
(
2012
)].
48.
B.
West
,
F.
Useli-Bacchitta
,
H.
Sabbah
,
V.
Blanchet
,
A.
Bodi
,
P. M.
Mayer
, and
C.
Joblin
, “
Photodissociation of pyrene cations: Structure and energetics from C16H10+ to C14+ and almost everything in between
,”
J. Phys. Chem. A
118
,
7824
7831
(
2014
).
49.
D.
Levine
and
R. B.
Bernstein
,
Molecular Reaction Dynamics and Chemical Reactivity
(
Oxford University Press
,
1987
).
50.
P. B.
Armentrout
, “
Kinetic energy dependence of ion–molecule reactions: Guided ion beams and threshold measurements
,”
Int. J. Mass Spectrom.
200
,
219
241
(
2000
), the state of the field as we move into a new millenium.
51.
P. B.
Armentrout
, “
Mass spectrometry—not just a structural tool: The use of guided ion beam tandem mass spectrometry to determine thermochemistry
,”
J. Am. Soc. Mass Spectrom.
13
,
419
434
(
2002
).
52.
F.
Muntean
and
P. B.
Armentrout
, “
Guided ion beam study of collision-induced dissociation dynamics: Integral and differential cross sections
,”
J. Chem. Phys.
115
,
1213
1228
(
2001
).
53.
W.
Forst
,
Unimolecular Reactions: A Concise Introduction
(
Cambridge University Press
,
2003
).
54.
A. I. S.
Holm
,
H. a. B.
Johansson
,
H.
Cederquist
, and
H.
Zettergren
, “
Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules
,”
J. Chem. Phys.
134
,
044301
(
2011
).
55.
See http://www.jmol.org/ for Jmol: an open-source java viewer for chemical structures in 3d.
56.
A.
Cauchy
, “
Note sur divers théorèmes relatifs à la rectification des courbes et à la quadrature des surfaces
,”
C. R. Acad. Sci.
13
,
1060
1065
(
1841
).
57.
T.
Beitz
,
R.
Laudien
,
H.-G.
Löhmannsröben
, and
B.
Kallies
, “
Ion mobility spectrometric investigation of aromatic cations in the gas phase
,”
J. Phys. Chem. A
110
,
3514
3520
(
2006
).
You do not currently have access to this content.