Energy transfer between vibrational modes can be quite facile, and it has been proposed as the dominant mechanism for energy pooling in extreme environments such as nonthermal plasmas and laser cavities. To understand such processes, we perform quasi-classical trajectory studies of CO(v) + CO(v) collisions on a new full-dimensional potential energy surface fit to high-level ab initio data using a neural network method and examine the key vibrational energy transfer channels. In addition to the highly efficient CO(v + 1) + CO(v − 1) channel, there exists a significant, sometimes dominant, CO(v + 2) + CO(v − 2) channel for large v states at low collision energies. The latter is shown to stem from the substantially increased interaction between highly vibrationally excited CO, which has a much larger dipole moment than at its equilibrium bond length. Finally, the vibrational state-specific cross sections and their energy dependence on the thermal range are predicted from a limited dataset using Gaussian process regression. The relevance of these results to plasma chemistry and laser engineering and the recently observed flipping of highly vibrationally excited CO adsorbates on a cold NaCl surface is discussed.

1.
J. P.
Toennies
,
Annu. Rev. Phys. Chem.
27
,
225
(
1976
).
2.
I.
Oref
and
D. C.
Tardy
,
Chem. Rev.
90
,
1407
(
1990
).
3.
R. G.
Gilbert
,
Int. Rev. Phys. Chem.
10
,
319
(
1991
).
4.
G. W.
Flynn
,
C. S.
Parmenter
, and
A. M.
Wodtke
,
J. Phys. Chem.
100
,
12817
(
1996
).
5.
Unimolecular Kinetics: Parts 2 and 3: Collisional Energy Transfer and the Master Equation
, edited by
S. H.
Robertson
(
Elsevier
,
2019
).
6.
A. W.
Jasper
,
J. Phys. Chem. A
124
,
1205
(
2020
).
7.
A. J.
McCaffery
,
Phys. Chem. Chem. Phys.
6
,
1637
(
2004
).
8.
J. C.
Polanyi
and
K. B.
Woodall
,
J. Chem. Phys.
56
,
1563
(
1972
).
9.
B.
Stewart
,
P. D.
Magill
,
T. P.
Scott
,
J.
Derouard
, and
D. E.
Pritchard
,
Phys. Rev. Lett.
60
,
282
(
1988
).
10.
J. A.
Mack
,
K.
Mikulecky
, and
A. M.
Wodtke
,
J. Chem. Phys.
105
,
4105
(
1996
).
11.
Z.
Gao
,
T.
Karman
,
S. N.
Vogels
,
M.
Besemer
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
10
,
469
(
2018
).
12.
D.
Yang
,
J.
Huang
,
X.
Hu
,
H.
Guo
, and
D.
Xie
,
Nat. Commun.
10
,
4658
(
2019
).
13.
G.
Lendvay
and
G. C.
Schatz
, in
Unimolecular Kinetics: Parts 2 and 3: Collisional Energy Transfer and the Master Equation
, edited by
S. H.
Robertson
(
Elsevier
,
2019
).
14.
S. Y.
Lin
and
H.
Guo
,
Chem. Phys.
289
,
191
(
2003
).
15.
S. Y.
Lin
and
H.
Guo
,
J. Phys. Chem. A
107
,
7197
(
2003
).
16.
F.
Gatti
,
F.
Otto
,
S.
Sukiasyan
, and
H.-D.
Meyer
,
J. Chem. Phys.
123
,
174311
(
2005
).
17.
S. F.
dos. Santos
,
N.
Balakrishnan
,
R. C.
Forrey
, and
P. C.
Stancil
,
J. Chem. Phys.
138
,
104302
(
2013
).
18.
J. F. E.
Croft
,
N.
Balakrishnan
,
M.
Huang
, and
H.
Guo
,
Phys. Rev. Lett.
121
,
113401
(
2018
).
19.
B.
Yang
,
N.
Balakrishnan
,
P.
Zhang
,
X.
Wang
,
J. M.
Bowman
,
R. C.
Forrey
, and
P. C.
Stancil
,
J. Chem. Phys.
145
,
034308
(
2016
).
20.
B.
Yang
,
X. H.
Wang
,
P. C.
Stancil
,
J. M.
Bowman
,
N.
Balakrishnan
, and
R. C.
Forrey
,
J. Chem. Phys.
145
,
224307
(
2016
).
21.
D.
Yang
,
X.
Hu
, and
D.
Xie
,
J. Comput. Chem.
40
,
1084
(
2019
).
22.
D.
Babikov
and
A.
Semenov
,
J. Phys. Chem. A
120
,
319
(
2016
).
23.
G.
Lendvay
, in
Unimolecular Kinetics: Parts 2 and 3: Collisional Energy Transfer and the Master Equation
, edited by
S. H.
Robertson
(
Elsevier
,
2019
).
24.
X.
Yang
,
J. M.
Price
,
J. A.
Mack
,
C. G.
Morgan
,
C. A.
Rogaski
,
D.
McGuire
,
E. H.
Kim
, and
A. M.
Wodtke
,
J. Phys. Chem.
97
,
3944
(
1993
).
25.
N.
Mukherjee
and
R. N.
Zare
,
J. Chem. Phys.
135
,
024201
(
2011
).
26.
H.
Chadwick
,
P. M.
Hundt
,
M. E.
van Reijzen
,
B. L.
Yoder
, and
R. D.
Beck
,
J. Chem. Phys.
140
,
034321
(
2014
).
27.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
,
Science
358
,
356
(
2017
).
28.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
,
Nat. Chem.
10
,
561
(
2018
).
29.
C.
Amarasinghe
,
H.
Li
,
C. A.
Perera
,
M.
Besemer
,
A.
van der Avoird
,
G. C.
Groenenboom
,
C.
Xie
,
H.
Guo
, and
A. G.
Suits
,
J. Phys. Chem. Lett.
10
,
2422
(
2019
).
30.
C.
Amarasinghe
,
H.
Li
,
C. A.
Perera
,
M.
Besemer
,
J.
Zuo
,
C.
Xie
,
A.
van der Avoird
,
G. C.
Groenenboom
,
H.
Guo
,
J.
Kłos
, and
A. G.
Suits
,
Nat. Chem.
12
,
528
(
2020
).
31.
C. B.
Moore
,
R. E.
Wood
,
B. L.
Hu
, and
J. T.
Yardley
,
J. Chem. Phys.
46
,
4222
(
1967
).
32.
A.
Fridman
,
Plasma Chemistry
(
Cambridge University Press
,
Cambridge
,
2012
).
33.
D.
Zhang
,
Q.
Huang
,
E. J.
Devid
,
E.
Schuler
,
N. R.
Shiju
,
G.
Rothenberg
,
G.
van Rooij
,
R.
Yang
,
K.
Liu
, and
A. W.
Kleyn
,
J. Phys. Chem. C
122
,
19338
(
2018
).
34.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
,
5805
(
2017
).
35.
C. E.
Treanor
,
J. W.
Rich
, and
R. G.
Rehm
,
J. Chem. Phys.
48
,
1798
(
1968
).
36.
N.
Gatti
,
S.
Ponduri
,
F. J. J.
Peeters
,
D. C. M.
van den Bekerom
,
T.
Minea
,
P.
Tosi
,
M. C. M.
van de Sanden
, and
G. J.
van Rooij
,
Plasma Sources Sci. Technol.
27
,
055006
(
2018
).
37.
A.
Bogaerts
,
W.
Wang
,
A.
Berthelot
, and
V.
Guerra
,
Plasma Sources Sci. Technol.
25
,
055016
(
2016
).
38.
P.
Diomede
,
M. C. M.
van de Sanden
, and
S.
Longo
,
J. Phys. Chem. C
121
,
19568
(
2017
).
39.
C.
Wittig
and
I. W. M.
Smith
,
Chem. Phys. Lett.
16
,
292
(
1972
).
40.
H. T.
Powell
,
J. Chem. Phys.
63
,
2635
(
1975
).
41.
42.
R. L.
DeLeon
and
J. W.
Rich
,
Chem. Phys.
107
,
283
(
1986
).
43.
A. E.
DePristo
and
H.
Rabitz
,
Chem. Phys.
44
,
171
(
1979
).
44.
M.
Cacciatore
and
G. D.
Billing
,
Chem. Phys.
58
,
395
(
1981
).
45.
G. D.
Billing
and
M.
Cacciatore
,
Chem. Phys. Lett.
94
,
218
(
1983
).
46.
C.
Coletti
and
G. D.
Billing
,
J. Chem. Phys.
111
,
3891
(
1999
).
47.
C.
Coletti
and
G. D.
Billing
,
J. Chem. Phys.
113
,
4869
(
2000
).
48.
W.
Bohn
,
H. v.
Buelow
,
S.
Dass
,
A. A.
Ionin
,
Y. M.
Klimachev
,
A. A.
Kotkov
,
J. K.
McIver
,
J. E.
McCord
,
L. V.
Seleznev
,
D. V.
Sinitsyn
,
R. F.
Tate
, and
G. D.
Hager
,
Quantum Electron.
35
,
1126
(
2005
).
49.
J. A.
Lau
,
A.
Choudhury
,
C.
Li
,
D.
Schwarzer
,
V. B.
Verma
, and
A. M.
Wodtke
,
Science
367
,
175
(
2020
).
50.
H.-C.
Chang
and
G. E.
Ewing
,
Phys. Rev. Lett.
65
,
2125
(
1990
).
51.
L.
Chen
,
J. A.
Lau
,
D.
Schwarzer
,
J.
Meyer
,
V. B.
Verma
, and
A. M.
Wodtke
,
Science
363
,
158
(
2019
).
52.
S. A.
Corcelli
and
J. C.
Tully
,
J. Chem. Phys.
116
,
8079
(
2002
).
53.
G. W. M.
Vissers
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
Phys. Chem. Chem. Phys.
5
,
4767
(
2003
).
54.
G. W. M.
Vissers
,
A.
Heßelmann
,
G.
Jansen
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
122
,
054306
(
2005
).
55.
R.
Dawes
,
X.-G.
Wang
, and
T.
Carrington
,
J. Phys. Chem. A
117
,
7612
(
2013
).
56.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
57.
M.
Majumder
,
S. A.
Ndengué
, and
R.
Dawes
,
Mol. Phys.
114
,
1
(
2016
).
58.
L. A.
Surin
,
D. N.
Fourzikov
,
T. F.
Giesen
,
S.
Schlemmer
,
G.
Winnewisser
,
V. A.
Panfilov
,
B. S.
Dumesh
,
G. W. M.
Vissers
, and
A.
van der Avoird
,
J. Phys. Chem. A
111
,
12238
(
2007
).
59.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
60.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
61.
T. J.
Lee
,
Chem. Phys. Lett.
372
,
362
(
2003
).
62.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
63.
J.
Chen
,
X.
Xu
,
X.
Xu
, and
D. H.
Zhang
,
J. Chem. Phys.
138
,
154301
(
2013
).
64.
B.
Jiang
,
J.
Li
, and
H.
Guo
,
Int. Rev. Phys. Chem.
35
,
479
(
2016
).
65.
B.
Fu
and
D. H.
Zhang
,
J. Chem. Theor. Comput.
14
,
2289
(
2018
).
66.
B.
Jiang
,
J.
Li
, and
H.
Guo
,
J. Phys. Chem. Lett.
11
,
5120
(
2020
).
67.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
68.
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
139
,
054112
(
2013
).
69.
J.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
139
,
204103
(
2013
).
70.
K.
Shao
,
J.
Chen
,
Z.
Zhao
, and
D. H.
Zhang
,
J. Chem. Phys.
145
,
071101
(
2016
).
71.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
72.
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
,
J. Chem. Theor. Comput.
11
,
1631
(
2015
).
73.
J.
Li
and
H.
Guo
,
J. Chem. Phys.
143
,
214304
(
2015
).
74.
X.
Hu
,
W. L.
Hase
, and
T.
Pirraglia
,
J. Comput. Chem.
12
,
1014
(
1991
).
75.
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer
,
New York
,
1990
).
76.
L.
Bonnet
and
J. C.
Rayez
,
Chem. Phys. Lett.
277
,
183
(
1997
).
77.
D.
Koner
,
O. T.
Unke
,
K.
Boe
,
R. J.
Bemish
, and
M.
Meuwly
,
J. Chem. Phys.
150
,
211101
(
2019
).
78.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
Cambridge, MA
,
2006
).
79.
C. E.
Rasmussen
and
H.
Nickisch
,
J. Mach. Learning Res.
11
,
3011
(
2010
).
81.
I.
Tobias
,
R. J.
Fallon
, and
J. T.
Vanderslice
,
J. Chem. Phys.
33
,
1638
(
1960
).
82.
J. S.
Muenter
,
J. Mol. Spectrosc.
55
,
490
(
1975
).
83.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure, IV, Constants of Diatomic Molecules
(
van Norstrand
,
Princeton
,
1979
).
84.
Q.
Hong
,
Q.
Sun
,
M.
Bartolomei
,
F.
Pirani
, and
C.
Coletti
,
Phys. Chem. Chem. Phys.
22
,
9375
(
2020
).
85.
Y.
Liu
,
H.
Song
,
D.
Xie
,
J.
Li
, and
H.
Guo
,
J. Am. Chem. Soc.
142
,
3331
(
2020
).
86.
S. R.
Langhoff
and
C. W.
Bauschlicher
,
J. Chem. Phys.
102
,
5220
(
1995
).

Supplementary Material

You do not currently have access to this content.