A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (μs to ms) charge separated state could be generated in high quantum yields (66%–74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet–singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.

1.
D. M.
Adams
etal.,
J. Phys. Chem. B
107
,
6668
6697
(
2003
).
2.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
322
(
1985
).
3.
D. O.
Hall
and
K. K.
Rao
,
Photosynthesis
(
Cambridge University Press
,
Boca Raton, FL
,
1994
).
4.
The Biophysics of Photosynthesis
, edited by
J.
Golbeck
and
A.
van der Est
(
Springer
,
New York
,
2014
).
5.
C. C.
Moser
,
J. M.
Keske
,
K.
Warncke
,
R. S.
Farid
, and
P. L.
Dutton
,
Nature
355
(
6363
),
796
802
(
1992
).
6.
L.
Lu
,
T.
Zheng
,
Q.
Wu
,
A. M.
Schneider
,
D.
Zhao
, and
L.
Yu
,
Chem. Rev.
115
(
23
),
12666
12731
(
2015
).
7.
A.
Wadsworth
,
M.
Moser
,
A.
Marks
,
M. S.
Little
,
N.
Gasparini
,
C. J.
Brabec
,
D.
Baran
, and
I.
McCulloch
,
Chem. Soc. Rev.
48
(
6
),
1596
1625
(
2019
).
8.
C.
Zhao
,
J.
Wang
,
J.
Jiao
,
L.
Huang
, and
J.
Tang
,
J. Mater. Chem. C
8
(
1
),
28
43
(
2020
).
9.
A.
Hagfeldt
,
G.
Boschloo
,
L.
Sun
,
L.
Kloo
, and
H.
Pettersson
,
Chem. Rev.
110
(
11
),
6595
6663
(
2010
).
10.
K.
Sharma
,
V.
Sharma
, and
S. S.
Sharma
,
Nanoscale Res. Lett.
13
(
1
),
381
(
2018
).
11.
F.
Bella
,
C.
Gerbaldi
,
C.
Barolo
, and
M.
Grätzel
,
Chem. Soc. Rev.
44
(
11
),
3431
3473
(
2015
).
12.
M. K.
Panda
,
K.
Ladomenou
, and
A. G.
Coutsolelos
,
Coord. Chem. Rev.
256
(
21-22
),
2601
2627
(
2012
).
13.
S.
Fukuzumi
and
K.
Ohkubo
,
Dalton Trans.
42
(
45
),
15846
15858
(
2013
).
14.
M.
Gilbert
and
B.
Albinsson
,
Chem. Soc. Rev.
44
(
4
),
845
862
(
2015
).
15.
S.
Preiss
,
A.
Paepcke
,
L.
Burkhardt
,
L.
Grossmann
,
S.
Lochbrunner
,
M.
Bauer
,
T.
Opatz
, and
K.
Heinze
,
Chem. - Eur. J.
25
(
23
),
5940
5949
(
2019
).
16.
G. P.
Wiederrecht
,
M. P.
Niemczyk
,
W. A.
Svec
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
118
(
1
),
81
88
(
1996
).
17.
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
, “
Covalently linked systems containing porphyrin units
,” in
Electron Transfer in Chemistry
, edited by
V.
Balzani
(
Wiley-VCH
,
Weinheim, Germany
,
2001
), Vol. 3, p.
272
.
18.
M. E.
El-Khouly
,
S.
Fukuzumi
, and
F.
D’Souza
,
ChemPhysChem
15
(
1
),
30
47
(
2014
).
19.
J.
Schäfer
,
M.
Holzapfel
,
A.
Schmiedel
,
U. E.
Steiner
, and
C.
Lambert
,
Phys. Chem. Chem. Phys.
20
(
42
),
27093
27104
(
2018
).
20.
N. N.
Lukzen
,
J. H.
Klein
,
C.
Lambert
, and
U. E.
Steiner
,
Z. Phys. Chem.
231
(
2
),
197
223
(
2017
).
21.
U. E.
Steiner
,
J.
Schäfer
,
N. N.
Lukzen
, and
C.
Lambert
,
J. Phys. Chem. C
122
(
22
),
11701
11708
(
2018
).
22.
S.
Riese
,
L.
Mungenast
,
A.
Schmiedel
,
M.
Holzapfel
,
N. N.
Lukzen
,
U. E.
Steiner
, and
C.
Lambert
,
Mol. Phys.
117
(
19
),
2632
2644
(
2018
).
23.
J. H.
Klein
,
T. L.
Sunderland
,
C.
Kaufmann
,
M.
Holzapfel
,
A.
Schmiedel
, and
C.
Lambert
,
Phys. Chem. Chem. Phys.
15
(
38
),
16024
16030
(
2013
).
24.
F.
Zieschang
,
M. H.
Schreck
,
A.
Schmiedel
,
M.
Holzapfel
,
J. H.
Klein
,
C.
Walter
,
B.
Engels
, and
C.
Lambert
,
J. Phys. Chem. C
118
(
48
),
27698
27714
(
2014
).
25.
J. H.
Klein
,
D.
Schmidt
,
U. E.
Steiner
, and
C.
Lambert
,
J. Am. Chem. Soc.
137
(
34
),
11011
11021
(
2015
).
26.
C.
Kaiser
,
A.
Schmiedel
,
M.
Holzapfel
, and
C.
Lambert
,
J. Phys. Chem. C
116
(
29
),
15265
15280
(
2012
).
27.
S.
Riese
,
M.
Holzapfel
,
A.
Schmiedel
,
I.
Gert
,
D.
Schmidt
,
F.
Würthner
, and
C.
Lambert
,
Inorg. Chem.
57
(
20
),
12480
12488
(
2018
).
28.
S.
Amthor
,
C.
Lambert
,
S.
Dümmler
,
I.
Fischer
, and
J.
Schelter
,
J. Phys. Chem. A
110
(
15
),
5204
5214
(
2006
).
29.
S. G.
Telfer
,
T. M.
McLean
, and
M. R.
Waterland
,
Dalton Trans.
40
(
13
),
3097
3108
(
2011
).
30.
J. D.
Hall
,
T. M.
McLean
,
S. J.
Smalley
,
M. R.
Waterland
, and
S. G.
Telfer
,
Dalton Trans.
39
(
2
),
437
445
(
2010
).
31.
C.
Bronner
,
S. A.
Baudron
,
M. W.
Hosseini
,
C. A.
Strassert
,
A.
Guenet
, and
L.
De Cola
,
Dalton Trans.
39
(
1
),
180
184
(
2010
).
32.
M. R.
Waterland
,
S. G.
Telfer
, and
T. M.
McLean
,
Chem. N. Z.
74
(
1
),
15
19
(
2010
).
33.
V. S.
Thoi
,
J. R.
Stork
,
D.
Magde
, and
S. M.
Cohen
,
Inorg. Chem.
45
(
26
),
10688
10697
(
2006
).
34.
J.
Schneider
,
K. Q.
Vuong
,
J. A.
Calladine
,
X.-Z.
Sun
,
A. C.
Whitwood
,
M. W.
George
, and
R. N.
Perutz
,
Inorg. Chem.
50
(
23
),
11877
11889
(
2011
).
35.
A.
Antipas
and
M.
Gouterman
,
J. Am. Chem. Soc.
105
(
15
),
4896
4901
(
1983
).
36.
C. O.
Obondi
,
G. N.
Lim
,
B.
Churchill
,
P. K.
Poddutoori
,
A.
van der Est
, and
F.
D’Souza
,
Nanoscale
8
(
15
),
8333
8344
(
2016
).
37.
I. H. M.
Van Stokkum
,
D. S.
Larsen
, and
R.
Van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
104
(
2004
).
38.
J. K.
Hurley
,
N.
Sinai
, and
H.
Linschitz
,
Photochem. Photobiol.
38
(
1
),
9
14
(
1983
).
39.
P.
Müller
and
K.
Brettel
,
Photochem. Photobiol. Sci.
11
(
4
),
632
636
(
2012
).
40.
A.
Weller
,
Z. Phys. Chem.
133
(
1
),
93
98
(
1982
).
41.
P.
Chen
and
T. J.
Meyer
,
Chem. Rev.
98
,
1439
1478
(
1998
).
42.
R. A.
Marcus
,
J. Chem. Phys.
24
(
5
),
966
978
(
1956
).
43.
V.
Balzani
,
Electron Transfer in Chemistry
(
Wiley-VCH
,
Weinheim, Germany
,
2001
).
44.
G.
Grampp
and
W.
Jaenicke
,
Ber. Bunsen-Ges. Phys. Chem.
95
(
8
),
904
927
(
1991
).
45.
H.
Heitele
,
Angew. Chem., Int. Ed.
32
(
3
),
359
377
(
1993
).
46.

In general, much higher magnetic field effects are reported for lifetimes than for yields (cf. Refs. 47–49).

47.
Y.
Tanimoto
,
M.
Takashima
,
K.
Hasegawa
, and
M.
Itoh
,
Chem. Phys. Lett.
137
(
4
),
330
335
(
1987
).
48.
J.
Wang
,
C.
Doubleday
, Jr.
, and
N. J.
Turro
,
J. Phys. Chem.
93
(
12
),
4780
4782
(
1989
).
49.
T.
Klumpp
,
M.
Linsenmann
,
S. L.
Larson
,
B. R.
Limoges
,
D.
Bürssner
,
E. B.
Krissinel
,
C. M.
Elliott
, and
U. E.
Steiner
,
J. Am. Chem. Soc.
121
(
5
),
1076
1087
(
1999
).
50.
T.
Miura
,
K.
Miyaji
,
T.
Horikoshi
,
S.
Suzuki
,
M.
Kozaki
,
K.
Okada
, and
T.
Ikoma
,
J. Chem. Phys.
151
(
23
),
234306
(
2019
).
51.
T.
Miura
,
K.
Maeda
,
Y.
Oka
, and
T.
Ikoma
,
J. Phys. Chem. B
122
(
50
),
12173
12183
(
2018
).
52.
T.
Miura
,
D.
Fujiwara
,
K.
Akiyama
,
T.
Horikoshi
,
S.
Suzuki
,
M.
Kozaki
,
K.
Okada
, and
T.
Ikoma
,
J. Phys. Chem. Lett.
8
(
3
),
661
665
(
2017
).
53.
H.
Hayashi
and
S.
Nagakura
,
Bull. Chem. Soc. Jpn.
57
(
2
),
322
328
(
1984
).
54.
A.
Carrington
and
A. D.
McLachlan
,
Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics
(
Harper & Row
,
New York
,
1967
).
55.
T. P.
Fay
and
D. E.
Manolopoulos
,
J. Chem. Phys.
150
(
15
),
151102
(
2019
).
56.
D.
Mims
,
A.
Schmiedel
,
M.
Holzapfel
,
N. N.
Lukzen
,
C.
Lambert
, and
U. E.
Steiner
,
J. Chem. Phys.
151
(
24
),
244308
(
2019
).
57.
Wolfram Research, Inc.
, Mathematica, 11.2,
Wolfram Research, Inc.
,
2017
.
58.
M. L.
Connolly
,
J. Am. Chem. Soc.
107
(
5
),
1118
1124
(
1985
).
59.
M. M.
Somoza
,
M. I.
Sluch
, and
M. A.
Berg
,
Macromolecules
36
(
8
),
2721
2732
(
2003
).
60.
M. V.
Fedin
,
P. A.
Purtov
, and
E. G.
Bagryanskaya
,
J. Chem. Phys.
118
(
1
),
192
201
(
2003
).
61.
C. P.
Slichter
,
Principles of Magnetic Resonance
, 3rd ed. (
Springer
,
Berlin
,
2010
).
62.
K. J.
Reszka
,
M.
Takayama
,
R. H.
Sik
,
C. F.
Chignell
, and
I.
Saito
,
Photochem. Photobiol.
81
,
573
580
(
2005
).
63.
D. R.
Kattnig
,
B.
Mladenova
,
G.
Grampp
,
C.
Kaiser
,
A.
Heckmann
, and
C.
Lambert
,
J. Phys. Chem. C
113
(
7
),
2983
2995
(
2009
).
64.
C. R.
Timmel
,
U.
Till
,
B.
Brocklehurst
,
K. A.
McLauchlan
, and
P. J.
Hore
,
Mol. Phys.
95
(
1
),
71
89
(
1998
).
65.
T.
Suzuki
,
T.
Miura
,
K.
Maeda
, and
T.
Arai
,
J. Phys. Chem. A
109
(
44
),
9911
9918
(
2005
).
66.
C. R.
Timmel
,
F.
Cintolesi
,
B.
Brocklehurst
, and
P. J.
Hore
,
Chem. Phys. Lett.
334
(
4-6
),
387
395
(
2001
).
67.
U.
Till
,
C. R.
Timmel
,
B.
Brocklehurst
, and
P. J.
Hore
,
Chem. Phys. Lett.
298
(
1-3
),
7
14
(
1998
).
68.
S. N.
Batchelor
,
C. W. M.
Kay
,
K. A.
McLauchlan
, and
I. A.
Shkrob
,
J. Phys. Chem.
97
(
50
),
13250
13258
(
1993
).
69.
A. M.
Lewis
,
T. P.
Fay
,
D. E.
Manolopoulos
,
C.
Kerpal
,
S.
Richert
, and
C. R.
Timmel
,
J. Chem. Phys.
149
(
3
),
034103
(
2018
).

Supplementary Material

You do not currently have access to this content.