Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either “dressed” or “bare”) quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.

1.
X.
Andrade
,
J.
Alberdi-Rodriguez
,
D. A.
Strubbe
,
M. J. T.
Oliveira
,
F.
Nogueira
,
A.
Castro
,
J.
Muguerza
,
A.
Arruabarrena
,
S. G.
Louie
,
A.
Aspuru-Guzik
,
A.
Rubio
, and
M. A. L.
Marques
, “
Time-dependent density-functional theory in massively parallel computer architectures: The octopus project
,”
J. Phys.: Condens. Matter
24
,
233202
(
2012
).
2.
J.
Jornet-Somoza
,
J.
Alberdi-Rodriguez
,
B. F.
Milne
,
X.
Andrade
,
M. A. L.
Marques
,
F.
Nogueira
,
M. J. T.
Oliveira
,
J. J. P.
Stewart
, and
A.
Rubio
, “
Insights into colour-tuning of chlorophyll optical response in green plants
,”
Phys. Chem. Chem. Phys.
17
,
26599
26606
(
2015
).
3.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
4487
(
1996
).
4.
C.
Cocchi
,
D.
Prezzi
,
A.
Ruini
,
E.
Molinari
, and
C. A.
Rozzi
, “
Ab initio simulation of optical limiting: The case of metal-free phthalocyanine
,”
Phys. Rev. Lett.
112
,
198303
(
2014
).
5.
U.
De Giovannini
,
G.
Brunetto
,
A.
Castro
,
J.
Walkenhorst
, and
A.
Rubio
, “
Simulating pump–probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory
,”
Chem. Phys. Chem.
14
,
1363
1376
(
2013
).
6.
K.
Lopata
and
N.
Govind
, “
Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores
,”
J. Chem. Theory Comput.
7
,
1344
1355
(
2011
).
7.
A.
Yamada
and
K.
Yabana
, “
Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: Pulsed light, electron, and lattice motions in crystalline solids
,”
Phys. Rev. B
99
,
245103
(
2019
).
8.
S. A.
Sato
,
K.
Yabana
,
Y.
Shinohara
,
T.
Otobe
, and
G. F.
Bertsch
, “
Numerical pump–probe experiments of laser-excited silicon in nonequilibrium phase
,”
Phys. Rev. B
89
,
064304
(
2014
).
9.
Y. L.
Jiao
,
F.
Wang
,
X. H.
Hong
,
W. Y.
Su
,
Q. H.
Chen
, and
F. S.
Zhang
, “
Electron dynamics in CaB6 induced by one- and two-color femtosecond laser
,”
Phys. Lett. A
377
,
823
827
(
2013
).
10.
T.
Otobe
,
M.
Yamagiwa
,
J.-I.
Iwata
,
K.
Yabana
,
T.
Nakatsukasa
, and
G. F.
Bertsch
, “
First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field
,”
Phys. Rev. B
77
,
165104
(
2008
).
11.
K.-M.
Lee
,
C. M.
Kim
,
S. A.
Sato
,
T.
Otobe
,
Y.
Shinohara
,
K.
Yabana
, and
T.
Moon Jeong
, “
First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse
,”
J. Appl. Phys.
115
,
053519
(
2014
).
12.
J.
Walkenhorst
,
U.
De Giovannini
,
A.
Castro
, and
A.
Rubio
, “
Tailored pump–probe transient spectroscopy with time-dependent density-functional theory: Controlling absorption spectra
,”
Eur. Phys. J. B
89
,
128
(
2016
).
13.
G.
Wachter
,
C.
Lemell
,
J.
Burgdörfer
,
S. A.
Sato
,
X.-M.
Tong
, and
K.
Yabana
, “
Ab initio simulation of electrical currents induced by ultrafast laser excitation of dielectric materials
,”
Phys. Rev. Lett.
113
,
087401
(
2014
).
14.
M.
Jacobs
,
J.
Krumland
,
A. M.
Valencia
,
H.
Wang
,
M.
Rossi
, and
C.
Cocchi
, “
Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface
,”
Adv. Phys.: X
5
,
1749883
(
2020
).
15.
M. A. L.
Marques
and
E. K. U.
Gross
, “
Time-dependent density functional theory
,”
Annu. Rev. Phys. Chem.
55
,
427
455
(
2004
).
16.
M. A. L.
Marques
,
N.
Maitra
,
F.
Nogueira
,
E.
Gross
, and
A.
Rubio
,
Fundamentals of Time-Dependent Density Functional Theory
(
2012
), Vol. 837, p.
130
.
17.
X.
Andrade
,
A.
Castro
,
D.
Zueco
,
J. L.
Alonso
,
P.
Echenique
,
F.
Falceto
, and
Á.
Rubio
, “
Modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics
,”
J. Chem. Theory Comput.
5
,
728
742
(
2009
).
18.
C. A.
Rozzi
,
F.
Troiani
, and
I.
Tavernelli
, “
Quantum modeling of ultrafast photoinduced charge separation
,”
J. Phys.: Condens. Matter.
30
,
013002
(
2017
).
19.
L.
Gallmann
,
C.
Cirelli
, and
U.
Keller
, “
Attosecond science: Recent highlights and future trends
,”
Annu. Rev. Phys. Chem.
63
,
447
469
(
2012
).
20.
R.
Pazourek
,
S.
Nagele
, and
J.
Burgdörfer
, “
Attosecond chronoscopy of photoemission
,”
Rev. Mod. Phys.
87
,
765
802
(
2015
).
21.
A. S.
Landsman
and
U.
Keller
, “
Attosecond science and the tunnelling time problem
,”
Phys. Rep.
547
,
1
24
(
2015
).
22.
A.
Sommer
,
E. M.
Bothschafter
,
S. A.
Sato
,
C.
Jakubeit
,
T.
Latka
,
O.
Razskazovskaya
,
H.
Fattahi
,
M.
Jobst
,
W.
Schweinberger
,
V.
Shirvanyan
,
V. S.
Yakovlev
,
R.
Kienberger
,
K.
Yabana
,
N.
Karpowicz
,
M.
Schultze
, and
F.
Krausz
, “
Attosecond nonlinear polarization and light–matter energy transfer in solids
,”
Nature
534
,
86
90
(
2016
).
23.
A.
De Sio
,
F.
Troiani
,
M.
Maiuri
,
J.
Réhault
,
E.
Sommer
,
J.
Lim
,
S. F.
Huelga
,
M. B.
Plenio
,
C. A.
Rozzi
,
G.
Cerullo
,
E.
Molinari
, and
C.
Lienau
, “
Tracking the coherent generation of polaron pairs in conjugated polymers
,”
Nat. Commun.
7
,
13742
(
2016
).
24.
F.
Schlaepfer
,
M.
Lucchini
,
S. A.
Sato
,
M.
Volkov
,
L.
Kasmi
,
N.
Hartmann
,
A.
Rubio
,
L.
Gallmann
, and
U.
Keller
, “
Attosecond optical-field-enhanced carrier injection into the gaas conduction band
,”
Nature Phys.
14
,
560
564
(
2018
).
25.
B.
Buades
,
A.
Picón
,
I.
León
,
N.
Di Palo
,
S. L.
Cousin
,
C.
Cocchi
,
E.
Pellegrin
,
J. H.
Martin
,
S.
Mañas-Valero
,
E.
Coronado
,
T.
Danz
,
C.
Draxl
,
M.
Uemoto
,
K.
Yabana
,
M.
Schultze
,
S.
Wall
, and
J.
Biegert
, “
Attosecond-resolved petahertz carrier motion in semi-metallic TiS2
,” arXiv:1808.06493 (
2018
).
26.
A.
Zangwill
and
P.
Soven
, “
Density-functional approach to local-field effects in finite systems: Photoabsorbtion in the rare gases
,”
Phys. Rev. A
21
,
1561
1572
(
1980
).
27.
W.
Ekardt
, “
Size-dependent photoabsorption and photoemission of small metal particles
,”
Phys. Rev. B
31
,
6360
6370
(
1985
).
28.
W.
Ekardt
, “
Dynamical polarizability of small metal particles: Self-consistent spherical jellium background model
,”
Phys. Rev. Lett.
52
,
1925
1928
(
1984
).
29.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron–gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
30.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
31.
N. T.
Maitra
,
K.
Burke
, and
C.
Woodward
, “
Memory in time-dependent density functional theory
,”
Phys. Rev. Lett.
89
,
023002
(
2002
).
32.
O.
Gritsenko
and
E. J.
Baerends
, “
Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations
,”
J. Chem. Phys.
121
,
655
660
(
2004
).
33.
A.
Dreuw
and
M.
Head-Gordon
, “
Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin- bacteriochlorin and bacteriochlorophyll- spheroidene complexes
,”
J. Am. Chem. Soc.
126
,
4007
4016
(
2004
).
34.
J.
Autschbach
, “
Charge-transfer excitations and time-dependent density functional theory: Problems and some proposed solutions
,”
Chem. Phys. Chem.
10
,
1757
1760
(
2009
).
35.
T.
Stein
,
L.
Kronik
, and
R.
Baer
, “
Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory
,”
J. Am. Chem. Soc.
131
,
2818
2820
(
2009
).
36.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
, “
A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states
,”
J. Chem. Phys.
130
,
054112
(
2009
).
37.
N. T.
Maitra
, “
Charge transfer in time-dependent density functional theory
,”
J. Phys.: Condens. Matter.
29
,
423001
(
2017
).
38.
M.
Campetella
,
F.
Maschietto
,
M. J.
Frisch
,
G.
Scalmani
,
I.
Ciofini
, and
C.
Adamo
, “
Charge transfer excitations in TDDFT: A ghost-hunter index
,”
J. Comput. Chem.
38
,
2151
2156
(
2017
).
39.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
2946
(
2003
).
40.
D. J.
Tozer
, “
Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory
,”
J. Chem. Phys.
119
,
12697
12699
(
2003
).
41.
N. T.
Maitra
, “
Undoing static correlation: Long-range charge transfer in time-dependent density-functional theory
,”
J. Chem. Phys.
122
,
234104
(
2005
).
42.
C.
Cocchi
and
C.
Draxl
, “
Optical spectra from molecules to crystals: Insight from many-body perturbation theory
,”
Phys. Rev. B
92
,
205126
(
2015
).
43.
P.
Elliott
,
S.
Goldson
,
C.
Canahui
, and
N. T.
Maitra
, “
Perspectives on double-excitations in TDDFT
,”
Chem. Phys.
391
,
110
119
(
2011
).
44.
J. I.
Fuks
,
N.
Helbig
,
I. V.
Tokatly
, and
A.
Rubio
, “
Nonlinear phenomena in time-dependent density-functional theory: What Rabi oscillations can teach us
,”
Phys. Rev. B
84
,
075107
(
2011
).
45.
J. I.
Fuks
and
N. T.
Maitra
, “
Challenging adiabatic time-dependent density functional theory with a Hubbard dimer: The case of time-resolved long-range charge transfer
,”
Phys. Chem. Chem. Phys.
16
,
14504
14513
(
2014
).
46.
C. A.
Ullrich
and
I. V.
Tokatly
, “
Nonadiabatic electron dynamics in time-dependent density-functional theory
,”
Phys. Rev. B
73
,
235102
(
2006
).
47.
E. V.
Boström
,
A.
Mikkelsen
,
C.
Verdozzi
,
E.
Perfetto
, and
G.
Stefanucci
, “
Charge separation in donor-C60 complexes with real-time Green functions: The importance of nonlocal correlations
,”
Nano Lett.
18
,
785
792
(
2018
).
48.
A.
Guandalini
,
C.
Cocchi
,
S.
Pittalis
,
A.
Ruini
, and
C.
Rozzi
, “
Nonlinear response of a quantum system to impulsive perturbations: A non-perturbative real-time approach
,” arXiv:2004.06973 (
2020
).
49.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
, “
Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes
,”
J. Chem. Phys.
103
,
3998
4011
(
1995
).
50.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
51.
M.
Casida
, “
Theoretical and computational chemistry
,” in
Recent Developments and Applications in Modern Density Functional Theory
(
Elsevier, Amsterdam
,
1996
), Vol. 4.
52.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
323
(
2012
).
53.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
A823
(
1965
).
54.
C.
Faber
,
P.
Boulanger
,
I.
Duchemin
,
C.
Attaccalite
, and
X.
Blase
, “
Many-body Green’s function GW and Bethe–Salpeter study of the optical excitations in a paradigmatic model dipeptide
,”
J. Chem. Phys.
139
,
194308
(
2013
).
55.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
(
2002
).
56.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
, “
molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters
,”
Comput. Phys. Commun.
208
,
149
161
(
2016
).
57.
F.
Bruneval
,
S. M.
Hamed
, and
J. B.
Neaton
, “
A systematic benchmark of the ab initio Bethe–Salpeter equation approach for low-lying optical excitations of small organic molecules
,”
J. Chem. Phys.
142
,
244101
(
2015
).
58.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
Oxford University Press
,
2012
).
59.
M.
Marques
,
A.
Castro
,
G. F.
Bertsch
, and
A.
Rubio
, “
octopus: A first-principles tool for excited electron-ion dynamics
,”
Comput. Phys. Commun.
151
,
60
78
(
2003
).
60.
A.
Castro
,
H.
Appel
,
M.
Oliveira
,
C. A.
Rozzi
,
X.
Andrade
,
F.
Lorenzen
,
M. A. L.
Marques
,
E. K. U.
Gross
, and
A.
Rubio
, “
octopus: A tool for the application of time-dependent density functional theory
,”
Phys. Status Solidi B
243
,
2465
2488
(
2006
).
61.
X.
Andrade
,
D.
Strubbe
,
U.
De Giovannini
,
A. H.
Larsen
,
M. J. T.
Oliveira
,
J.
Alberdi-Rodriguez
,
A.
Varas
,
I.
Theophilou
,
N.
Helbig
,
M. J.
Verstraete
,
L.
Stella
,
F.
Nogueira
,
A.
Aspuru-Guzik
,
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems
,”
Phys. Chem. Chem. Phys.
17
,
31371
31396
(
2015
).
62.
N.
Tancogne-Dejean
,
M. J. T.
Oliveira
,
X.
Andrade
,
H.
Appel
,
C. H.
Borca
,
G.
Le Breton
,
F.
Buchholz
,
A.
Castro
,
S.
Corni
,
A. A.
Correa
,
U.
De Giovannini
,
A.
Delgado
,
F. G.
Eich
,
J.
Flick
,
G.
Gil
,
A.
Gomez
,
N.
Helbig
,
H.
Hübener
,
R.
Jestädt
,
J.
Jornet-Somoza
,
A. H.
Larsen
,
I. V.
Lebedeva
,
M.
Lüders
,
M. A. L.
Marques
,
S. T.
Ohlmann
,
S.
Pipolo
,
M.
Rampp
,
C. A.
Rozzi
,
D. A.
Strubbe
,
S. A.
Sato
,
C.
Schäfer
,
I.
Theophilou
,
A.
Welden
, and
A.
Rubio
, “
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
,”
J. Chem. Phys.
152
,
124119
(
2020
).
63.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
2006
(
1991
).
64.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
65.
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Propagators for the time-dependent Kohn–Sham equations
,”
J. Chem. Phys.
121
,
3425
3433
(
2004
).
66.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
67.
F.
Bruneval
, “
Ionization energy of atoms obtained from gw self-energy or from random phase approximation total energies
,”
J. Chem. Phys.
136
,
194107
(
2012
).
68.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
69.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
70.
F.
Bruneval
and
M. A. L.
Marques
, “
Benchmarking the starting points of the GW approximation for molecules
,”
J. Chem. Theory Comput.
9
,
324
329
(
2013
).
71.
J. R.
Platt
,
H. B.
Klevens
, and
W. C.
Price
, “
Absorption intensities of ethylenes and acetylenes in the vacuum ultraviolet
,”
J. Chem. Phys.
17
,
466
469
(
1949
).
72.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
73.
C.
Legrand
,
E.
Suraud
, and
P.-G.
Reinhard
, “
Comparison of self-interaction-corrections for metal clusters
,”
J. Phys. B
35
,
1115
1128
(
2002
).
74.
R. S.
Becker
,
J.
Seixas de Melo
,
A. L.
Maçanita
, and
F.
Elisei
, “
Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings
,”
J. Phys. Chem.
100
,
18683
18695
(
1996
).
75.
E. E.
Koch
and
A.
Otto
, “
Optical absorption of benzene vapour for photon energies from 6 ev to 35 ev
,”
Chem. Phys. Lett.
12
,
476
480
(
1972
).
76.
J. I.
Fuks
,
K.
Luo
,
E. D.
Sandoval
, and
N. T.
Maitra
, “
Time-resolved spectroscopy in time-dependent density functional theory: An exact condition
,”
Phys. Rev. Lett.
114
,
183002
(
2015
).
77.
K.
Luo
,
J. I.
Fuks
, and
N. T.
Maitra
, “
Studies of spuriously shifting resonances in time-dependent density functional theory
,”
J. Chem. Phys.
145
,
044101
(
2016
).
78.
M. R.
Provorse
,
B. F.
Habenicht
, and
C. M.
Isborn
, “
Peak-shifting in real-time time-dependent density functional theory
,”
J. Chem. Theory Comput.
11
,
4791
4802
(
2015
).
79.
J. I.
Fuks
,
P.
Elliott
,
A.
Rubio
, and
N. T.
Maitra
, “
Dynamics of charge-transfer processes with time-dependent density functional theory
,”
J. Phys. Chem. Lett.
4
,
735
739
(
2013
).
80.
J. I.
Fuks
and
N. T.
Maitra
, “
Charge transfer in time-dependent density-functional theory: Insights from the asymmetric Hubbard dimer
,”
Phys. Rev. A
89
,
062502
(
2014
).
81.
S.
Raghunathan
and
M.
Nest
, “
Critical examination of explicitly time-dependent density functional theory for coherent control of dipole switching
,”
J. Chem. Theory Comput.
7
,
2492
2497
(
2011
).
82.
S.
Raghunathan
and
M.
Nest
, “
Coherent control and time-dependent density functional theory: Towards creation of wave packets by ultrashort laser pulses
,”
J. Chem. Phys.
136
,
064104
(
2012
).
83.
M. R.
Provorse
and
C. M.
Isborn
, “
Electron dynamics with real-time time-dependent density functional theory
,”
Int. J. Quantum Chem.
116
,
739
749
(
2016
).
84.
P.
Elliott
,
J. I.
Fuks
,
A.
Rubio
, and
N. T.
Maitra
, “
Universal dynamical steps in the exact time-dependent exchange-correlation potential
,”
Phys. Rev. Lett.
109
,
266404
(
2012
).
85.
N. T.
Maitra
, “
Perspective: Fundamental aspects of time-dependent density functional theory
,”
J. Chem. Phys.
144
,
220901
(
2016
).
86.
E.
Perfetto
and
G.
Stefanucci
, “
Some exact properties of the nonequilibrium response function for transient photoabsorption
,”
Phys. Rev. A
91
,
033416
(
2015
).
87.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).

Supplementary Material

You do not currently have access to this content.