We investigate the role of excitonic coupling between retinal chromophores of Krokinobacter eikastus rhodopsin 2 (KR2) in the circular dichroism (CD) spectrum using an exciton model combined with the transition density fragment interaction (TDFI) method. Although the multimer formation of retinal protein commonly induces biphasic negative and positive CD bands, the KR2 pentamer shows only a single positive CD band. The TDFI calculation reveals the dominant contribution of the Coulomb interaction and negligible contributions of exchange and charge-transfer interactions to the excitonic coupling energy. The exciton model with TDFI successfully reproduces the main features of the experimental absorption and CD spectra of KR2, which allow us to investigate the mechanism of the CD spectral shape observed in the KR2 pentamer. The results clearly show that the red shift of the CD band is attributed to the excitonic coupling between retinal chromophores. Further analysis reveals that the weak excitonic coupling plays a crucial role in the shape of the CD spectrum. The present approach provides a basis for understanding the origin of the KR2 CD spectrum and is useful for analyzing the mechanism of chromophore–chromophore interactions in biological systems.

1.
N.
Berova
,
K.
Nakanishi
, and
R. W.
Woody
,
Circular Dichroism: Principles and Applications
, 2nd ed. (
Wiley VCH
,
New York
,
2000
).
2.
C. A.
Hasselbacher
,
J. L.
Spudich
, and
T. G.
Dewey
, “
Circular dichroism of halorhodopsin: Comparison with bacteriorhodopsin and sensory rhodopsin I
,”
Biochemistry
27
,
2540
2546
(
1988
).
3.
J. Y.
Cassim
, “
Unique biphasic band shape of the visible circular dichroism of bacteriorhodopsin in purple membrane
,”
Biophys. J.
63
,
1432
1442
(
1992
).
4.
C. M.
Davis
,
P. L.
Bustamante
, and
P. A.
Loach
, “
Reconstitution of bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α- and β-polypeptides, bacteriochlorophyll a, and carotenoid
,”
J. Biol. Chem.
270
,
5793
5804
(
1995
).
5.
S.
Georgakopoulou
,
R.
van Grondelle
, and
G.
van der Zwan
, “
Circular dichroism of carotenoids in bacterial light-harvesting complexes: Experiments and modeling
,”
Biophys. J.
87
,
3010
3022
(
2004
).
6.
J.
Adolphs
,
F.
Müh
,
M. E.-A.
Madjet
,
M. S.
am Busch
, and
T.
Renger
, “
Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting
,”
J. Am. Chem. Soc.
132
,
3331
3343
(
2010
).
7.
G.
Pescitelli
and
R. W.
Woody
, “
The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin
,”
J. Phys. Chem. B
116
,
6751
6763
(
2012
).
8.
N.
Harada
and
K.
Nakanishi
,
Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry
(
University Science Books
,
Mill Valley, CA
,
1983
).
9.
I.
Tinoco
, Jr.
, “
Theoretical aspects of optical activity
,”
Adv. Chem. Phys.
4
,
113
160
(
1962
).
10.
R. W.
Woody
, “
Improved calculation of the nπ* rotational strength in polypeptides
,”
J. Chem. Phys.
49
,
4797
4806
(
1968
).
11.
N.
Harada
and
K.
Nakanishi
, “
Determining the chiralities of optically active glycols
,”
J. Am. Chem. Soc.
91
,
3989
3991
(
1969
).
12.
P. M.
Bayley
,
E. B.
Nielsen
, and
J. A.
Schellman
, “
Rotatory properties of molecules containing two peptide groups: Theory
,”
J. Phys. Chem.
73
,
228
243
(
1969
).
13.
W. J.
Goux
and
T. M.
Hooker
, Jr.
, “
Chiroptical properties of proteins. I. Near-ultraviolet circular dichroism of ribonuclease S
,”
J. Am. Chem. Soc.
102
,
7080
7087
(
1980
).
14.
J. D.
Hirst
, “
Improving protein circular dichroism calculations in the far-ultraviolet through reparametrizing the amide chromophore
,”
J. Chem. Phys.
109
,
782
788
(
1998
).
15.
N. A.
Besley
and
J. D.
Hirst
, “
Theoretical studies toward quantitative protein circular dichroism calculations
,”
J. Am. Chem. Soc.
121
,
9636
9644
(
1999
).
16.
N.
Sreerama
and
R. W.
Woody
, “
Computation and analysis of protein circular dichroism spectra
,”
Methods Enzymol.
383
,
318
351
(
2004
).
17.
W.
Kuhn
, “
The physical significance of optical rotatory power
,”
Trans. Faraday Soc.
26
,
293
308
(
1930
).
18.
J. G.
Kirkwood
, “
On the theory of optical rotatory power
,”
J. Chem. Phys.
5
,
479
491
(
1937
).
19.
J.
Frenkel
, “
On the transformation of light into heat in solids. II
,”
Phys. Rev.
37
,
1276
1294
(
1931
).
20.
J. C.
Chang
, “
Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls
,”
J. Chem. Phys.
67
,
3901
3909
(
1977
).
21.
B. P.
Krueger
,
G. D.
Scholes
, and
G. R.
Fleming
, “
Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method
,”
J. Phys. Chem. B
102
,
5378
5386
(
1998
).
22.
S.
Tretiak
,
C.
Middleton
,
V.
Chernyak
, and
S.
Mukamel
, “
Exciton Hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria
,”
J. Phys. Chem. B
104
,
4519
4528
(
2000
).
23.
C.-P.
Hsu
,
G. R.
Fleming
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Excitation energy transfer in condensed media
,”
J. Chem. Phys.
114
,
3065
3072
(
2001
).
24.
M. F.
Iozzi
,
B.
Mennucci
,
J.
Tomasi
, and
R.
Cammi
, “
Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM)
,”
J. Chem. Phys.
120
,
7029
7040
(
2004
).
25.
K. F.
Wong
,
B.
Bagchi
, and
P. J.
Rossky
, “
Distance and orientation dependence of excitation transfer rates in conjugated systems: Beyond the Förster theory
,”
J. Phys. Chem. A
108
,
5752
5763
(
2004
).
26.
M. E.
Madjet
,
A.
Abdurahman
, and
T.
Renger
, “
Intermolecular Coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers
,”
J. Phys. Chem. B
110
,
17268
17281
(
2006
).
27.
J.
Neugebauer
, “
Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory
,”
J. Chem. Phys.
126
,
134116
(
2007
).
28.
B.
Fückel
,
A.
Köhn
,
M. E.
Harding
,
G.
Diezemann
,
G.
Hinze
,
T.
Basché
, and
J.
Gauss
, “
Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies
,”
J. Chem. Phys.
128
,
074505
(
2008
).
29.
R. F.
Fink
,
J.
Pfister
,
H. M.
Zhao
, and
B.
Engels
, “
Assessment of quantum chemical methods and basis sets for excitation energy transfer
,”
Chem. Phys.
346
,
275
285
(
2008
).
30.
J.
Vura-Weis
,
M. D.
Newton
,
M. R.
Wasielewski
, and
J. E.
Subotnik
, “
Characterizing the locality of diabatic states for electronic excitation transfer by decomposing the diabatic coupling
,”
J. Phys. Chem. C
114
,
20449
20460
(
2010
).
31.
T.
Kawatsu
,
K.
Matsuda
, and
J.
Hasegawa
, “
Bridge-mediated excitation energy transfer pathways through protein media: A slater determinant-based electronic coupling calculation combined with localized molecular orbitals
,”
J. Phys. Chem. A
115
,
10814
10822
(
2011
).
32.
A. A.
Voityuk
, “
Estimation of electronic coupling for photoinduced charge separation and charge recombination using the fragment charge difference method
,”
J. Phys. Chem. C
117
,
2670
2675
(
2013
).
33.
K. J.
Fujimoto
, “
Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting
,”
J. Chem. Phys.
141
,
214105
(
2014
).
34.
B.
Błasiak
,
M.
Maj
,
M.
Cho
, and
R. W.
Góra
, “
Distributed multipolar expansion approach to calculation of excitation energy transfer couplings
,”
J. Chem. Theory Comput.
11
,
3259
3266
(
2015
).
35.
K. J.
Fujimoto
and
S.
Hayashi
, “
Electronic Coulombic coupling of excitation-energy transfer in xanthorhodopsin
,”
J. Am. Chem. Soc.
131
,
14152
14153
(
2009
).
36.
K. J.
Fujimoto
, “
Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states
,”
J. Chem. Phys.
137
,
034101
(
2012
).
37.
K. J.
Fujimoto
, in
Chemical Science of π-Electron Systems
, edited by
T.
Akasaka
,
A.
Osuka
,
S.
Fukuzumi
,
H.
Kandori
, and
Y.
Aso
(
Springer
,
Tokyo, Japan
,
2015
), pp.
761
777
.
38.
K. J.
Fujimoto
, “
Transition-density-fragment interaction approach for exciton-coupled circular dichroism spectra
,”
J. Chem. Phys.
133
,
124101
(
2010
).
39.
K. J.
Fujimoto
and
S. P.
Balashov
, “
Vibronic coupling effect on circular dichroism spectrum: Carotenoid–retinal interaction in xanthorhodopsin
,”
J. Chem. Phys.
146
,
095101
(
2017
).
40.
K. J.
Fujimoto
and
C.
Kitamura
, “
A theoretical study of crystallochromy: Spectral tuning of solid-state tetracenes
,”
J. Chem. Phys.
139
,
084511
(
2013
).
41.
K.
Inoue
,
H.
Ono
,
R.
Abe-Yoshizumi
,
S.
Yoshizawa
,
H.
Ito
,
K.
Kogure
, and
H.
Kandori
, “
A light-driven sodium ion pump in marine bacteria
,”
Nat. Commun.
4
,
1678
(
2013
).
42.
H. E.
Kato
,
K.
Inoue
,
R.
Abe-Yoshizumi
 et al., “
Structural basis for Na+ transport mechanism by a light-driven Na+ pump
,”
Nature
521
,
48
53
(
2015
).
43.
I.
Gushchin
,
V.
Shevchenko
,
V.
Polovinkin
 et al., “
Crystal structure of a light-driven sodium pump
,”
Nat. Struct. Mol. Biol.
22
,
390
395
(
2015
).
44.
K.
Inoue
,
M.
Konno
,
R.
Abe-Yoshizumi
, and
H.
Kandori
, “
The role of the NDQ motif in sodium-pumping rhodopsins
,”
Angew. Chem., Int. Ed.
54
,
11536
11539
(
2015
).
45.
H.
Kandori
,
K.
Inoue
, and
S. P.
Tsunoda
, “
Light-driven sodium-pumping rhodopsin: A new concept of active transport
,”
Chem. Rev.
118
,
10646
10658
(
2018
).
46.
K.
Deisseroth
,
G.
Feng
,
A. K.
Majewska
,
G.
Miesenbock
,
A.
Ting
, and
M. J.
Schnitzer
, “
Next-generation optical technologies for illuminating genetically targeted brain circuits
,”
J. Neurosci.
26
,
10380
10386
(
2006
).
47.
Y. I.
Wu
,
D.
Frey
,
O. I.
Lungu
,
A.
Jaehrig
,
I.
Schlichting
,
B.
Kuhlman
, and
K. M.
Hahn
, “
A genetically encoded photoactivatable Rac controls the motility of living cells
,”
Nature
461
,
104
108
(
2009
).
48.
E. S.
Koganov
,
V.
Brumfeld
,
N.
Friedman
, and
M.
Sheves
, “
Origin of circular dichroism of xanthorhodopsin. A study with artificial pigments
,”
J. Phys. Chem. B
119
,
456
464
(
2015
).
49.
M.
Shibata
,
K.
Inoue
,
K.
Ikeda
,
M.
Konno
,
M.
Singh
,
C.
Kataoka
,
R.
Abe-Yoshizumi
,
H.
Kandori
, and
T.
Uchihashi
, “
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy
,”
Sci. Rep.
8
,
8262
(
2018
).
50.
P. -O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
51.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
52.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
53.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
54.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
55.
K.
Fujimoto
and
W.
Yang
, “
Density-fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg2+-sensitive dye
,”
J. Chem. Phys.
129
,
054102
(
2008
).
56.
H.
Nakatsuji
, “
Cluster expansion of the wavefunction. Excited states
,”
Chem. Phys. Lett.
59
,
362
364
(
1978
).
57.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
58.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
59.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
60.
J. W.
Ponder
,
Tinker4.2
(
Washington University
,
St. Louis, MO
,
2004
).
61.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., Gaussian09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
62.
S. P.
Balashov
,
E. S.
Imasheva
,
V. A.
Boichenko
,
J.
Antón
,
J. M.
Wang
, and
J. K.
Lanyi
, “
Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna
,”
Science
309
,
2061
2064
(
2005
).
63.
S. P.
Balashov
,
E. S.
Imasheva
, and
J. K.
Lanyi
, “
Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin
,”
Biochemistry
45
,
10998
11004
(
2006
).
64.
T.
Polívka
,
S. P.
Balashov
,
P.
Chábera
,
E. S.
Imasheva
,
A.
Yartsev
,
V.
Sundström
, and
J. K.
Lanyi
, “
Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin
,”
Biophys. J.
96
,
2268
2277
(
2009
).
65.
G. D.
Scholes
,
R. D.
Harcourt
, and
K. P.
Ghiggino
, “
Rate expressions for excitation transfer. III. An ab initio study of electronic factors in excitation transfer and exciton resonance interactions
,”
J. Chem. Phys.
102
,
9574
9581
(
1995
).
66.
T.
Tsukamoto
,
T.
Kikukawa
,
T.
Kurata
,
K.-H.
Jung
,
N.
Kamo
, and
M.
Demura
, “
Salt bridge in the conserved His-Asp cluster in Gloeobacter rhodopsin contributes to trimer formation
,”
FEBS Lett.
587
,
322
327
(
2013
).
You do not currently have access to this content.