When a highly charged globular macromolecule, such as a dendritic polyelectrolyte or charged nanogel, is immersed into a physiological electrolyte solution, monovalent and divalent counterions from the solution bind to the macromolecule in a certain ratio and thereby almost completely electroneutralize it. For charged macromolecules in biological media, the number ratio of bound monovalent vs divalent ions is decisive for the desired function. A theoretical prediction of such a sorption ratio is challenging because of the competition of electrostatic (valency), ion-specific, and binding saturation effects. Here, we devise and discuss a few approximate models to predict such an equilibrium sorption ratio by extending and combining established electrostatic binding theories such as Donnan, Langmuir, Manning, and Poisson–Boltzmann approaches, to systematically study the competitive uptake of monovalent and divalent counterions by the macromolecule. We compare and fit our models to coarse-grained (implicit-solvent) computer simulation data of the globular polyelectrolyte dendritic polyglycerol sulfate (dPGS) in salt solutions of mixed valencies. The dPGS molecule has high potential to serve in macromolecular carrier applications in biological systems and at the same time constitutes a good model system for a highly charged macromolecule. We finally use the simulation-informed models to extrapolate and predict electrostatic features such as the effective charge as a function of the divalent ion concentration for a wide range of dPGS generations (sizes).

1.
M.
Muthukumar
,
Macromolecules
50
,
9528
(
2017
).
2.
A.
Katchalsky
,
Biophys. J.
4
,
9
(
1964
).
3.
M.
Rubinstein
and
G. A.
Papoian
,
Soft Matter
8
,
9265
(
2012
).
4.
H.
Boroudjerdi
 et al,
Phys. Rep.
416
,
129
(
2005
).
5.
S.
Förster
and
M.
Schmidt
,
Adv. Polym. Sci.
120
,
51
133
(
1995
).
6.
A.
Dobrynin
and
M.
Rubinstein
,
Prog. Polym. Sci.
30
,
1049
(
2005
).
7.
S.
Liu
,
K.
Ghosh
, and
M.
Muthukumar
,
J. Chem. Phys.
119
,
1813
(
2003
).
8.
A.
Chremos
and
J. F.
Douglas
,
Soft Matter
12
,
2932
(
2016
).
9.
S.
Alexander
 et al,
J. Chem. Phys.
80
,
5776
(
1984
).
10.
L.
Belloni
,
Colloids Surf., A
140
,
227
(
1998
).
11.
L.
Bocquet
,
E.
Trizac
, and
M.
Aubouy
,
J. Chem. Phys.
117
,
8138
(
2002
).
12.
S.
Förster
,
M.
Schmidt
, and
M.
Antonietti
,
J. Phys. Chem.
96
,
4008
(
1992
).
13.
A.
Dobrynin
,
R. H.
Colby
, and
M.
Rubinstein
,
Macromolecules
28
,
1859
(
1995
).
14.
J. R.
Wenner
,
M. C.
Williams
,
I.
Rouzina
, and
V. A.
Bloomfield
,
Biophys. J.
82
,
3160
(
2002
).
15.
E.
Raspaud
,
M.
Olvera de la Cruz
,
J.-L.
Sikorav
, and
F.
Livolant
,
Biophys. J.
74
,
381
(
1998
).
16.
S.
Liu
and
M.
Muthukumar
,
J. Chem. Phys.
116
,
9975
(
2002
).
17.
M.
Muthukumar
,
J. Chem. Phys.
120
,
9343
(
2004
).
18.
J.
Rühe
 et al, “
Polyelectrolyte brushes
,” in
Polyelectrolytes with Defined Molecular Architecture I
(
Springer
,
2004
), pp.
79
150
.
19.
P.
Pincus
,
Macromolecules
24
,
2912
(
1991
).
20.
O.
Borisov
,
T.
Birshtein
, and
E.
Zhulina
,
J. Phys. II
1
,
521
(
1991
).
21.
E. B.
Zhulina
,
T. M.
Birshtein
, and
O. V.
Borisov
,
Macromolecules
28
,
1491
(
1995
).
22.
E. B.
Zhulina
,
J.
Klein Wolterink
, and
O. V.
Borisov
,
Macromolecules
33
,
4945
(
2000
).
23.
P. K.
Jha
,
J. W.
Zwanikken
,
F. A.
Detcheverry
,
J. J.
de Pablo
, and
M.
Olvera de la Cruz
,
Soft Matter
7
,
5965
(
2011
).
24.
J.
Hua
,
M. K.
Mitra
, and
M.
Muthukumar
,
J. Chem. Phys.
136
,
134901
(
2012
).
25.
J.
Landsgesell
,
D.
Sean
,
P.
Kreissl
,
K.
Szuttor
, and
C.
Holm
,
Phys. Rev. Lett.
122
,
208002
(
2019
).
26.
I.
Adroher-Benítez
 et al,
Phys. Chem. Chem. Phys.
19
,
6838
(
2017
).
27.
M.
Quesada-Pérez
,
J. A.
Maroto-Centeno
,
A.
Martín-Molina
, and
A.
Moncho-Jordá
,
Phys. Rev. E
97
,
042608
(
2018
).
28.
S.
Förster
and
M.
Schmidt
, “
Polyelectrolytes in solution
,” in
Physical Properties of Polymers
(
Springer
,
Berlin, Heidelberg
,
1995
), Vol. 120.
29.
G. S.
Manning
,
Soft Matter
8
,
9334
(
2012
).
30.
H. G. M.
Van de Steeg
,
M. A.
Cohen Stuart
,
A.
De Keizer
, and
B. H.
Bijsterbosch
,
Langmuir
8
,
2538
(
1992
).
31.
M. A. G.
Dahlgren
 et al,
J. Phys. Chem.
97
,
11769
(
1993
).
32.
R. R.
Netz
and
J.-F.
Joanny
,
Macromolecules
32
,
9026
(
1999
).
33.
R.
Hariharan
,
C.
Biver
,
J.
Mays
, and
W. B.
Russel
,
Macromolecules
31
,
7506
(
1998
).
34.
D. I.
Gittins
and
F.
Caruso
,
J. Phys. Chem. B
105
,
6846
(
2001
).
36.
G.
Decher
,
J. D.
Hong
, and
J.
Schmitt
,
Thin Solid Films
210-211
,
831
(
1992
).
37.
G.
Decher
,
Science
277
,
1232
(
1997
).
38.
G.
Ladam
 et al,
Langmuir
16
,
1249
(
2000
).
39.
R. A.
McAloney
,
M.
Sinyor
,
V.
Dudnik
, and
M. C.
Goh
,
Langmuir
17
,
6655
(
2001
).
40.
S. T.
Dubas
and
J. B.
Schlenoff
,
Langmuir
17
,
7725
(
2001
).
41.
A.
Hugerth
,
N.
Caram-Lelham
, and
L.-O.
Sundelöf
,
Carbohydr. Polym.
34
,
149
(
1997
).
42.
L.
Rusu-Balaita
,
J.
Desbrieres
, and
M.
Rinaudo
,
Polym. Bull.
50
,
91
(
2003
).
43.
R. G.
Winkler
,
M. O.
Steinhauser
, and
P.
Reineker
,
Phys. Rev. E
66
,
021802
(
2002
).
44.
A.
Kudlay
and
M.
Olvera de la Cruz
,
J. Chem. Phys.
120
,
404
(
2004
).
45.
M.
Mende
,
G.
Petzold
, and
H.-M.
Buchhammer
,
Colloid Polym. Sci.
280
,
342
(
2002
).
46.
E.
Spruijt
,
A. H.
Westphal
,
J. W.
Borst
,
M. A.
Cohen Stuart
, and
J.
van der Gucht
,
Macromolecules
43
,
6476
(
2010
).
47.
J.
van der Gucht
,
E.
Spruijt
,
M.
Lemmers
, and
M. A.
Cohen Stuart
,
J. Colloid Interface Sci.
361
,
407
(
2011
).
48.
P. M.
Biesheuvel
and
M. A.
Cohen Stuart
,
Langmuir
20
,
2785
(
2004
).
49.
S.
Perry
,
Y.
Li
,
D.
Priftis
,
L.
Leon
, and
M.
Tirrell
,
Polymers
6
,
1756
(
2014
).
50.
J.
Dernedde
 et al,
Proc. Natl. Acad. Sci. U. S. A.
107
,
19679
(
2010
).
51.
J.
Khandare
,
M.
Calderón
,
N. M.
Dagia
, and
R.
Haag
,
Chem. Soc. Rev.
41
,
2824
(
2012
).
52.
D.
Gröger
 et al,
Bioconjugate Chem.
24
,
1507
(
2013
).
53.
D.
Maysinger
 et al,
Biomacromolecules
16
,
3073
(
2015
).
54.
S.
Reimann
 et al,
Adv. Healthcare Mater.
4
,
2154
(
2015
).
55.
C. C.
Lee
,
J. A.
MacKay
,
J. M.
Fréchet
, and
F. C.
Szoka
,
Nat. Biotechnol.
23
,
1517
(
2005
).
56.
M.
Ballauff
and
C. N.
Likos
,
Angew. Chem., Int. Ed.
43
,
2998
(
2004
).
57.
W.
Tian
and
Y.
Ma
,
Chem. Soc. Rev.
42
,
705
(
2013
).
58.
A.
Sousa-Herves
 et al,
Nanoscale
7
,
3923
(
2015
).
59.
J.
Vonnemann
 et al,
Theranostics
4
,
629
(
2014
).
60.
X.
Xu
,
Q.
Ran
,
R.
Haag
,
M.
Ballauff
, and
J.
Dzubiella
,
Macromolecules
50
,
4759
(
2017
).
61.
R.
Nikam
,
X.
Xu
,
M.
Ballauff
,
M.
Kanduč
, and
J.
Dzubiella
,
Soft Matter
14
,
4300
(
2018
).
62.
H.
Ohshima
,
T. W.
Healy
, and
L. R.
White
,
J. Colloid Interface Sci.
90
,
17
(
1982
).
63.
B. H.
Zimm
and
M. L.
Bret
,
J. Biomol. Struct. Dyn.
1
,
461
(
1983
).
64.
L.
Belloni
,
M.
Drifford
, and
P.
Turq
,
Chem. Phys.
83
,
147
(
1984
).
65.
G. V.
Ramanathan
,
J. Chem. Phys.
88
,
3887
(
1988
).
66.
G. S.
Manning
,
J. Phys. Chem. B
111
,
8554
(
2007
).
67.
D. A. J.
Gillespie
 et al,
Soft Matter
10
,
566
(
2014
).
68.
H.
Ohshima
,
J. Colloid Interface Sci.
323
,
92
(
2008
).
69.
E.
Trizac
,
L.
Bocquet
, and
M.
Aubouy
,
Phys. Rev. Lett.
89
,
248301
(
2002
).
70.
E.
Trizac
,
L.
Bocquet
,
M.
Aubouy
, and
H. H.
von Grünberg
,
Langmuir
19
,
4027
(
2003
).
71.
A.
Diehl
and
Y.
Levin
,
J. Chem. Phys.
121
,
12100
(
2004
).
72.
X.
Xu
 et al,
Biomacromolecules
19
,
409
(
2018
).
73.
D. E.
Owens
and
N. A.
Peppas
,
Int. J. Pharm.
307
,
93
(
2006
).
74.
T.
Cedervall
 et al,
Proc. Natl. Acad. Sci. U. S. A.
104
,
2050
(
2007
).
75.
S.
Lindman
 et al,
Nano Lett.
7
,
914
(
2007
).
76.
M. P.
Monopoli
,
C.
Åberg
,
A.
Salvati
, and
K. A.
Dawson
,
Nat. Nanotechnol.
7
,
779
(
2012
).
77.
F.
Wang
 et al,
Nanomedicine
9
,
1159
(
2013
).
78.
M. C.
Lo Giudice
,
L. M.
Herda
,
E.
Polo
, and
K. A.
Dawson
,
Nat. Commun.
7
,
13475
(
2016
).
79.
L.
Boselli
,
E.
Polo
,
V.
Castagnola
, and
K. A.
Dawson
,
Angew. Chem., Int. Ed.
56
,
4215
(
2017
).
80.
S.
Friesen
,
G.
Hefter
, and
R.
Buchner
,
J. Phys. Chem. B
123
,
891
(
2019
).
81.
J. F.
Da Silva
and
R. J. P.
Williams
,
The Biological Chemistry of the Elements: The Inorganic Chemistry of Life
(
Oxford University Press
,
2001
).
82.
R. A.
Meyers
,
Encyclopedia of Molecular Cell Biology and Molecular Medicine
(
Wiley Online Library
,
2004
).
83.
R. H.
Kretsinger
,
V. N.
Uversky
, and
E. A.
Permyakov
,
Encyclopedia of Metalloproteins
(
Springer
,
2013
).
84.
X.
Xu
and
J.
Dzubiella
,
Colloid Polym. Sci.
298
(
7
),
747
759
(
2020
).
85.
I.
Pochard
,
A.
Foissy
, and
P.
Couchot
,
Colloid Polym. Sci.
277
,
818
(
1999
).
86.
L.
Birnhack
,
O.
Keller
,
S. C.
Tang
,
N.
Fridman-Bishop
, and
O.
Lahav
,
Sep. Purif. Technol.
223
,
24
(
2019
).
87.
Y.
Kobuchi
,
H.
Motomura
,
Y.
Noma
, and
F.
Hanada
,
J. Membr. Sci.
27
,
173
(
1986
).
88.
T.
Sata
, “
New applications of ion exchange membranes
,” in
Macromolecules 1992
(
VST Utrecht
,
1993
), p.
451
.
89.
T.
Sata
,
T.
Sata
, and
W.
Yang
,
J. Membr. Sci.
206
,
31
(
2002
).
90.
P. S.
Kuhn
,
Y.
Levin
, and
M. C.
Barbosa
,
Physica A
266
,
413
(
1999
).
91.
S.
Gavryushov
and
P.
Zielenkiewicz
,
J. Phys. Chem. B
101
,
792
(
1997
).
92.
A. P.
dos Santos
,
A.
Diehl
, and
Y.
Levin
,
J. Chem. Phys.
132
,
104105
(
2010
).
93.
J.
Arenzon
,
J.
Stilck
, and
Y.
Levin
,
Eur. Phys. J. B
12
,
79
(
1999
).
94.
A.
Naji
,
A.
Arnold
,
C.
Holm
, and
R. R.
Netz
,
Europhys. Lett.
67
,
130
(
2004
).
95.
M.
Kanduč
,
A.
Naji
, and
R.
Podgornik
,
J. Chem. Phys.
132
,
224703
(
2010
).
96.
N.
Adžić
and
R.
Podgornik
,
J. Chem. Phys.
144
,
214901
(
2016
).
97.
P. J.
Basser
and
A. J.
Grodzinsky
,
Biophys. Chem.
46
,
57
(
1993
).
98.
A.
Moncho-Jordá
and
J.
Dzubiella
,
Phys. Chem. Chem. Phys.
18
,
5372
(
2016
).
99.
S.
Ahualli
,
A.
Martín-Molina
, and
M.
Quesada-Pérez
,
Phys. Chem. Chem. Phys.
16
,
25483
(
2014
).
100.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press London
,
San Diego
,
1991
).
101.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
(
Interscience
,
New York
,
1967
), Vol. 15.
102.
E. J. W.
Verwey
,
J. Phys. Chem.
51
,
631
(
1947
).
103.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Electrochim. Acta
46
,
221
(
2000
).
104.
M.
Eigen
and
E.
Wicke
,
J. Phys. Chem.
58
,
702
(
1954
).
105.
V.
Kralj-Iglič
and
A.
Iglič
,
J. Phys. II
6
,
477
(
1996
).
106.
N.
Cuvillier
 et al,
Prog. Colloid Polym. Sci.
105
,
118
(
1997
).
107.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
79
,
435
(
1997
).
108.
I.
Kalcher
,
J. C. F.
Schulz
, and
J.
Dzubiella
,
Phys. Rev. Lett.
104
,
097802
(
2010
).
109.
I.
Kalcher
,
J. C. F.
Schulz
, and
J.
Dzubiella
,
J. Chem. Phys.
133
,
164511
(
2010
).
110.
R.
Chudoba
,
J.
Heyda
, and
J.
Dzubiella
,
Soft Matter
14
,
9631
(
2018
).
111.
A.
Moncho-Jordá
and
I.
Adroher-Benítez
,
Soft Matter
10
,
5810
(
2014
).
112.
D.
Ben-Yaakov
,
D.
Andelman
,
D.
Harries
, and
R.
Podgornik
,
J. Phys.: Condens. Matter
21
,
424106
(
2009
).
113.
E. R. A.
Lima
 et al,
J. Phys. Chem. B
112
,
1580
(
2008
).
114.
P.
Koelsch
 et al,
Colloids Surf., A
303
,
110
136
(
2007
).
115.
H. I.
Okur
 et al,
J. Phys. Chem. B
121
,
1997
(
2017
).
116.
P.
Lo Nostro
and
B. W.
Ninham
,
Chem. Rev.
112
,
2286
(
2012
).
117.
N.
Schwierz
,
D.
Horinek
, and
R. R.
Netz
,
Langmuir
29
,
2602
(
2013
).
118.
Y.
Burak
,
G.
Ariel
, and
D.
Andelman
,
Curr. Opin. Colloid Interface Sci.
9
,
53
(
2004
).
119.
S.-W. W.
Chen
and
B.
Honig
,
J. Phys. Chem. B
101
,
9113
(
1997
).
120.
I.
Rouzina
and
V. A.
Bloomfield
,
Biophys. Chem.
64
,
139
(
1997
).
121.
V. K.
Misra
,
K. A.
Sharp
,
R. A.
Friedman
, and
B.
Honig
,
J. Mol. Biol.
238
,
245
(
1994
).
122.
M. D.
Paulsen
,
B.
Richey
,
C. F.
Anderson
, and
M.
Record
,
Chem. Phys. Lett.
139
,
448
(
1987
).
123.
I.
Rouzina
and
V. A.
Bloomfield
,
J. Phys. Chem.
100
,
4292
(
1996
).
124.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
(
1969
).
125.
F.
Oosawa
,
Polyelectrolytes
(
Marcel Dekker
,
New York
,
1971
).
126.
J. D.
McGhee
and
P. H.
von Hippel
,
J. Mol. Biol.
86
,
469
(
1974
).
127.
P.
Flory
,
J. Chem. Phys.
21
,
162
(
1953
).
128.
E.
Raphael
and
J.-F.
Joanny
,
Europhys. Lett.
13
,
623
(
1990
).
129.
R. A. G.
Friedman
and
G. S.
Manning
,
Biopolymers
23
,
2671
(
1984
).
130.
A.
Kundagrami
and
M.
Muthukumar
,
J. Chem. Phys.
128
,
244901
(
2008
).
131.
S.
Huißmann
,
A.
Wynveen
,
C. N.
Likos
, and
R.
Blaak
,
J. Phys.: Condens. Matter
22
,
232101
(
2010
).
132.
S.
Huißmann
,
A.
Wynveen
,
C. N.
Likos
, and
R.
Blaak
,
J. Mater. Chem.
20
,
10486
(
2010
).
133.
J. S.
Kłos
and
J.-U.
Sommer
,
Macromolecules
43
,
4418
(
2010
).
134.
J. S.
Kłos
and
J.-U.
Sommer
,
J. Chem. Phys.
134
,
204902
(
2011
).
135.

rd in our previous works is defined as the location of the major peak of the sulfate density distribution.60,61

136.
R. H.
Stokes
and
R. A.
Robinson
,
J. Am. Chem. Soc.
70
,
1870
(
1948
).
137.
Y.
Marcus
and
G.
Hefter
,
Chem. Rev.
106
,
4585
(
2006
).
138.
Y.
Yao
,
M. L.
Berkowitz
, and
Y.
Kanai
,
J. Chem. Phys.
143
,
241101
(
2015
).
139.
M.
Pavlov
,
P. E. M.
Siegbahn
, and
M.
Sandström
,
J. Phys. Chem. A
102
,
219
(
1998
).
140.
M.
Kohagen
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. B
118
,
7902
(
2014
).
141.
C.
Yigit
,
N.
Welsch
,
M.
Ballauff
, and
J.
Dzubiella
,
Langmuir
28
,
14373
(
2012
).
142.
F. T.
Wall
and
J.
Berkowitz
,
J. Chem. Phys.
26
,
114
(
1957
).
143.
D.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
2000
).
144.
J.
Kierzenka
and
L. F.
Shampine
,
ACM Trans. Math. Software
27
,
299
(
2001
).
145.
S.
Yu
 et al,
Soft Matter
11
,
4630
(
2015
).
146.
P. W.
Atkins
and
J.
De Paula
,
Physical Chemistry
(
W. H. Freeman and Company
,
2010
).
147.
M.
Gilson
and
H.-X.
Zhou
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
21
(
2007
).
148.
I. J.
General
,
J. Chem. Theory Comput.
6
,
2520
(
2010
).
149.
D.
Harries
,
R.
Podgornik
,
V. A.
Parsegian
,
E.
Mar-Or
, and
D.
Andelman
,
J. Chem. Phys.
124
,
224702
(
2006
).
150.
D.
Boris
and
M.
Rubinstein
,
Macromolecules
29
,
7251
(
1996
).
151.
I.
Berndt
,
J. S.
Pedersen
, and
W.
Richtering
,
Angew. Chem., Int. Ed.
45
,
1737
(
2006
).
152.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
,
2001
).
You do not currently have access to this content.