The 2D-Raman-THz response in all possible time-orderings (Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman) of amorphous water ice is calculated in two ways: from atomistic molecular dynamics simulations and with the help of a Feynman diagram model, the latter of which power-expands the potential energy surface and the dipole and polarizability surfaces up to leading order. Comparing both results allows one to dissect the 2D-Raman-THz response into contributions from mechanical anharmonicity, as well as electrical dipole and polarizability anharmonicities. Mechanical anharmonicity dominates the 2D-Raman-THz response of the hydrogen-bond stretching and hydrogen-bond bending bands of water, and dipole anharmonicity dominates that of the librational band, while the contribution of polarizability anharmonicity is comparably weak. A distinct echo of the hydrogen-bond stretching band is observed for the THz-Raman-THz pulse sequence, again dominated by mechanical anharmonicity. A peculiar mechanism is discussed, which is based on the coupling between the many normal modes within the hydrogen-bond stretching band and which will inevitably generate such an echo for an amorphous structure.

1.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
2.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
3.
S.
Palese
,
J. T.
Buontempo
,
L.
Schilling
,
W. T.
Lotshaw
,
Y.
Tanimura
,
S.
Mukamel
, and
R. J. D.
Miller
,
J. Phys. Chem.
98
,
12466
(
1994
).
4.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
106
,
1687
(
1997
).
5.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
277
,
159
(
1997
).
6.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
107
,
2267
(
1997
).
7.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
108
,
240
(
1998
).
8.
A.
Ma
and
R. M.
Stratt
,
Phys. Rev. Lett.
85
,
1004
(
2000
).
9.
Y.
Tanimura
and
T.
Steffen
,
J. Phys. Soc. Jpn.
69
,
4095
(
2000
).
10.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
,
307
(
2000
).
11.
S.
Saito
and
I.
Ohmine
,
Phys. Rev. Lett.
88
,
207401
(
2002
).
12.
K.
Okumura
and
Y.
Tanimura
,
J. Phys. Chem. A
107
,
8092
(
2003
).
13.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
119
,
9073
(
2003
).
14.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
125
,
084506
(
2006
).
15.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
16.
Y.
Nagata
and
Y.
Tanimura
,
J. Chem. Phys.
124
,
024508
(
2006
).
17.
R.
DeVane
,
C.
Kasprzyk
,
B.
Space
, and
T.
Keyes
,
J. Phys. Chem. B
110
,
3773
(
2006
).
18.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
074512
(
2006
).
19.
T.
Yagasaki
and
S.
Saito
,
Acc. Chem. Res.
42
,
1250
(
2009
).
20.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
21.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
111
,
3105
(
1999
).
22.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
113
,
771
(
2000
).
23.
L. J.
Kaufman
,
J.
Heo
,
L. D.
Ziegler
, and
G. R.
Fleming
,
Phys. Rev. Lett.
88
,
207402
(
2002
).
24.
K. J.
Kubarych
,
C. J.
Milne
, and
R. J. D.
Miller
,
Int. Rev. Phys. Chem.
22
,
497
(
2003
).
25.
O.
Golonzka
,
N.
Demirdöven
,
M.
Khalil
, and
A.
Tokmakoff
,
J. Chem. Phys.
113
,
9893
(
2000
).
26.
Y. L.
Li
,
L.
Huang
,
R. J.
Dwayne Miller
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Chem. Phys.
128
,
234507
(
2008
).
27.
H.
Frostig
,
T.
Bayer
,
N.
Dudovich
,
Y. C.
Eldar
, and
Y.
Silberberg
,
Nat. Photonics
9
,
339
(
2015
).
28.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
29.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
30.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
, and
T.
Elsaesser
,
J. Chem. Phys.
130
,
164503
(
2009
).
31.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
,
R.
Hey
, and
U.
Schade
,
Phys. Rev. Lett.
107
,
067401
(
2011
).
32.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
, and
R.
Hey
,
J. Phys. Chem. B
115
,
5448
(
2011
).
33.
T.
Elsaesser
,
K.
Reimann
, and
M.
Woerner
,
J. Chem. Phys.
142
,
212301
(
2015
).
34.
C.
Somma
,
G.
Folpini
,
K.
Reimann
,
M.
Woerner
, and
T.
Elsaesser
,
J. Chem. Phys.
144
,
184202
(
2015
).
35.
J.
Lu
,
Y.
Zhang
,
H. Y.
Hwang
,
B. K.
Ofori-Okai
,
S.
Fleischer
, and
K. A.
Nelson
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
11800
(
2016
).
36.
C. L.
Johnson
,
B. E.
Knighton
, and
J. A.
Johnson
,
Phys. Rev. Lett.
122
,
073901
(
2019
).
37.
S.
Houver
,
L.
Huber
,
M.
Savoini
,
E.
Abreu
, and
S. L.
Johnson
,
Opt. Express
27
,
10854
(
2019
).
38.
P.
Hamm
,
M.
Meuwly
,
S. L.
Johnson
, and
P.
Beaud
,
Struct. Dyn.
4
,
061601
(
2017
).
39.
D. J.
Ulness
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Chem. Phys.
108
,
3897
(
1998
).
40.
P.
Hamm
and
J.
Savolainen
,
J. Chem. Phys.
136
,
094516
(
2012
).
41.
P.
Hamm
,
J.
Savolainen
,
J.
Ono
, and
Y.
Tanimura
,
J. Chem. Phys.
136
,
236101
(
2012
).
42.
P.
Hamm
,
J. Chem. Phys.
141
,
184201
(
2014
).
43.
J.
Savolainen
,
S.
Ahmed
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
20402
(
2013
).
44.
A.
Berger
,
G.
Ciardi
,
D.
Sidler
,
P.
Hamm
, and
A.
Shalit
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
2458
(
2019
).
45.
A.
Shalit
,
S.
Ahmed
,
J.
Savolainen
, and
P.
Hamm
,
Nat. Chem.
9
,
273
(
2017
).
46.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
6857
(
2016
).
47.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
,
J. Phys. Chem. Lett.
8
,
4640
(
2017
).
48.
G.
Ciardi
,
A.
Berger
,
P.
Hamm
, and
A.
Shalit
,
J. Phys. Chem. Lett.
10
,
4463
(
2019
).
49.
C. H.
Cho
,
J.
Urquidi
,
S.
Singh
, and
G. W.
Robinson
,
J. Phys. Chem. B
103
,
1991
(
1999
).
50.
M.
Cho
,
J. Chem. Phys.
111
,
4140
(
1999
).
52.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Chem. Phys.
141
,
124503
(
2014
).
53.
H.
Ito
,
J.-Y.
Jo
, and
Y.
Tanimura
,
Struct. Dyn.
2
,
054102
(
2015
).
54.
T.
Ikeda
,
H.
Ito
, and
Y.
Tanimura
,
J. Chem. Phys.
142
,
212421
(
2015
).
55.
Z.
Pan
,
T.
Wu
,
T.
Jin
,
Y.
Liu
,
Y.
Nagata
,
R.
Zhang
, and
W.
Zhuang
,
J. Chem. Phys.
142
,
212419
(
2015
).
56.
H.
Ito
and
Y.
Tanimura
,
J. Chem. Phys.
144
,
074201
(
2016
).
57.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
,
J. Phys. Chem. Lett.
7
,
4147
(
2016
).
58.
I. B.
Magdǎu
,
G. J.
Mead
,
G. A.
Blake
, and
T. F.
Miller
,
J. Phys. Chem. A
123
,
7278
(
2019
).
59.
D.
Sidler
and
P.
Hamm
,
J. Chem. Phys.
150
,
044202
(
2019
).
60.
P.
Hamm
,
J. Chem. Phys.
151
,
054505
(
2019
).
61.
P.
Hamm
and
A.
Shalit
,
J. Chem. Phys.
146
,
130901
(
2017
).
62.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
90
,
047401
(
2003
).
63.
D.
Sidler
,
M.
Meuwly
, and
P.
Hamm
,
J. Chem. Phys.
148
,
244504
(
2018
).
64.
P.
Tröster
,
K.
Lorenzen
,
M.
Schwörer
, and
P.
Tavan
,
J. Phys. Chem. B
117
,
9486
(
2013
).
65.
J. S.
Tse
and
M. L.
Klein
,
Phys. Rev. Lett.
58
,
1672
(
1987
).
66.
67.
S.
Ueno
and
Y.
Tanimura
,
J. Chem. Theory Comput.
16
,
2099
(
2020
); arXiv:2002.10600.
You do not currently have access to this content.