A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion–water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion–water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum.

1.
Y.
Maréchal
,
The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio-Media
(
Elsevier
,
2006
).
2.
P.
Ball
, “
Water as an active constituent in cell biology
,”
Chem. Rev.
108
,
74
108
(
2008
).
3.
Y.
Marcus
, “
Effect of ions on the structure of water: Structure making and breaking
,”
Chem. Rev.
109
,
1346
1370
(
2009
).
4.
V.
Etacheri
,
R.
Marom
,
R.
Elazari
,
G.
Salitra
, and
D.
Aurbach
, “
Challenges in the development of advanced Li-ion batteries: A review
,”
Energy Environ. Sci.
4
,
3243
3262
(
2011
).
5.
F.
Fu
and
Q.
Wang
, “
Removal of heavy metal ions from wastewaters: A review
,”
J. Environ. Manage.
92
,
407
418
(
2011
).
6.
P.
Lo Nostro
and
B. W.
Ninham
, “
Hofmeister phenomena: An update on ion specificity in biology
,”
Chem. Rev.
112
,
2286
2322
(
2012
).
7.
D. J.
Tobias
,
A. C.
Stern
,
M. D.
Baer
,
Y.
Levin
, and
C. J.
Mundy
, “
Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces
,”
Annu. Rev. Phys. Chem.
64
,
339
359
(
2013
).
8.
N. F. A.
van der Vegt
,
K.
Haldrup
,
S.
Roke
,
J.
Zheng
,
M.
Lund
, and
H. J.
Bakker
, “
Water-mediated ion pairing: Occurrence and relevance
,”
Chem. Rev.
116
,
7626
7641
(
2016
).
9.
N.
Agmon
,
H. J.
Bakker
,
R. K.
Campen
,
R. H.
Henchman
,
P.
Pohl
,
S.
Roke
,
M.
Thämer
, and
A.
Hassanali
, “
Protons and hydroxide ions in aqueous systems
,”
Chem. Rev.
116
,
7642
7672
(
2016
).
10.
K.
Lehtipalo
,
L.
Rondo
,
J.
Kontkanen
,
S.
Schobesberger
,
T.
Jokinen
,
N.
Sarnela
,
A.
Kürten
,
S.
Ehrhart
,
A.
Franchin
,
T.
Nieminen
,
F.
Riccobono
,
M.
Sipilä
,
T.
Yli-Juuti
,
J.
Duplissy
,
A.
Adamov
,
L.
Ahlm
,
J.
Almeida
,
A.
Amorim
,
F.
Bianchi
,
M.
Breitenlechner
,
J.
Dommen
,
A. J.
Downard
,
E. M.
Dunne
,
R. C.
Flagan
,
R.
Guida
,
J.
Hakala
,
A.
Hansel
,
W.
Jud
,
J.
Kangasluoma
,
V.-M.
Kerminen
,
H.
Keskinen
,
J.
Kim
,
J.
Kirkby
,
A.
Kupc
,
O.
Kupiainen-Määttä
,
A.
Laaksonen
,
M. J.
Lawler
,
M.
Leiminger
,
S.
Mathot
,
T.
Olenius
,
I. K.
Ortega
,
A.
Onnela
,
T.
Petäjä
,
A.
Praplan
,
M. P.
Rissanen
,
T.
Ruuskanen
,
F. D.
Santos
,
S.
Schallhart
,
R.
Schnitzhofer
,
M.
Simon
,
J. N.
Smith
,
J.
Tröstl
,
G.
Tsagkogeorgas
,
A.
Tomé
,
P.
Vaattovaara
,
H.
Vehkamäki
,
A. E.
Vrtala
,
P. E.
Wagner
,
C.
Williamson
,
D.
Wimmer
,
P. M.
Winkler
,
A.
Virtanen
,
N. M.
Donahue
,
K. S.
Carslaw
,
U.
Baltensperger
,
I.
Riipinen
,
J.
Curtius
,
D. R.
Worsnop
, and
M.
Kulmala
, “
The effect of acid–base clustering and ions on the growth of atmospheric nano-particles
,”
Nat. Commun.
7
,
11594
(
2016
).
11.
A. W.
Omta
,
M. F.
Kropman
,
S.
Woutersen
, and
H. J.
Bakker
, “
Negligible effect of ions on the hydrogen-bond structure in liquid water
,”
Science
301
,
347
349
(
2003
).
12.
P.
Jungwirth
and
D. J.
Tobias
, “
Specific ion effects at the air/water interface
,”
Chem. Rev.
106
,
1259
1281
(
2006
).
13.
G.
Lamoureux
and
B.
Roux
, “
Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field
,”
J. Phys. Chem. B
110
,
3308
3322
(
2006
).
14.
C. D.
Wick
,
I.-F. W.
Kuo
,
C. J.
Mundy
, and
L. X.
Dang
, “
The effect of polarizability for understanding the molecular structure of aqueous interfaces
,”
J. Chem. Theory Comput.
3
,
2002
2010
(
2007
).
15.
H. J.
Bakker
, “
Structural dynamics of aqueous salt solutions
,”
Chem. Rev.
108
,
1456
1473
(
2008
).
16.
Y.
Levin
, “
Polarizable ions at interfaces
,”
Phys. Rev. Lett.
102
,
147803
(
2009
).
17.
Y.
Levin
,
A. P.
Dos Santos
, and
A.
Diehl
, “
Ions at the air-water interface: An end to a hundred-year-old mystery?
,”
Phys. Rev. Lett.
103
,
257802
(
2009
).
18.
K. J.
Tielrooij
,
N.
Garcia-Araez
,
M.
Bonn
, and
H. J.
Bakker
, “
Cooperativity in ion hydration
,”
Science
328
,
1006
1009
(
2010
).
19.
S.
Funkner
,
G.
Niehues
,
D. A.
Schmidt
,
M.
Heyden
,
G.
Schwaab
,
K. M.
Callahan
,
D. J.
Tobias
, and
M.
Havenith
, “
Watching the low-frequency motions in aqueous salt solutions: The terahertz vibrational signatures of hydrated ions
,”
J. Am. Chem. Soc.
134
,
1030
1035
(
2011
).
20.
M. D.
Baer
and
C. J.
Mundy
, “
Toward an understanding of the specific ion effect using density functional theory
,”
J. Phys. Chem. Lett.
2
,
1088
1093
(
2011
).
21.
P. L.
Geissler
, “
Water interfaces, solvation, and spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
317
337
(
2013
).
22.
T. L.
Beck
, “
The influence of water interfacial potentials on ion hydration in bulk water and near interfaces
,”
Chem. Phys. Lett.
561
,
1
13
(
2013
).
23.
T. P.
Pollard
and
T. L.
Beck
, “
Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics
,”
Curr. Opin. Colloid Interface Sci.
23
,
110
118
(
2016
).
24.
T. T.
Duignan
,
M. D.
Baer
,
G. K.
Schenter
, and
C. J.
Mundy
, “
Real single ion solvation free energies with quantum mechanical simulation
,”
Chem. Sci.
8
,
6131
6140
(
2017
).
25.
D.
Zhuang
,
M.
Riera
,
G. K.
Schenter
,
J. L.
Fulton
, and
F.
Paesani
, “
Many-body effects determine the local hydration structure of Cs+ in solution
,”
J. Phys. Chem. Lett.
10
,
406
412
(
2019
).
26.
C. J.
Weinheimer
and
J. M.
Lisy
, “
Hydrogen bonding in metal ion solvation: Vibrational spectroscopy of Cs+(CH3OH)1–6 in the 2.8 μm region
,”
Int. J. Mass Spectrom. Ion Process.
159
,
197
208
(
1996
).
27.
J. M.
Lisy
, “
Spectroscopy and structure of solvated alkali-metal ions
,”
Int. Rev. Phys. Chem.
16
,
267
289
(
1997
).
28.
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
, “
Vibrational spectroscopy of the ionic hydrogen bond: Fermi resonances and ion-molecule stretching frequencies in the binary X · H2O (X = Cl, Br, I) complexes via argon predissociation spectroscopy
,”
J. Am. Chem. Soc.
120
,
12361
12362
(
1998
).
29.
J.-H.
Choi
,
K. T.
Kuwata
,
Y.-B.
Cao
, and
M.
Okumura
, “
Vibrational spectroscopy of the Cl(H2O)n anionic clusters, n = 1–5
,”
J. Phys. Chem. A
102
,
503
507
(
1998
).
30.
P.
Ayotte
,
S. B.
Nielsen
,
G. H.
Weddle
,
M. A.
Johnson
, and
S. S.
Xantheas
, “
Spectroscopic observation of ion-induced water dimer dissociation in the X⋅(H2O)2 (X = F, Cl, Br, I) clusters
,”
J. Phys. Chem. A
103
,
10665
10669
(
1999
).
31.
P.
Ayotte
,
G. H.
Weddle
, and
M. A.
Johnson
, “
An infrared study of the competition between hydrogen-bond networking and ionic solvation: Halide-dependent distortions of the water trimer in the X⋅(H2O)3, (X = Cl, Br, I) systems
,”
J. Chem. Phys.
110
,
7129
7132
(
1999
).
32.
T. D.
Vaden
,
B.
Forinash
, and
J. M.
Lisy
, “
Rotational structure in the asymmetric OH stretch of Cs+(H2O)Ar
,”
J. Chem. Phys.
117
,
4628
4631
(
2002
).
33.
W. H.
Robertson
and
M. A.
Johnson
, “
Molecular aspects of halide ion hydration: The cluster approach
,”
Annu. Rev. Phys. Chem.
54
,
173
213
(
2003
).
34.
T. D.
Vaden
and
J. M.
Lisy
, “
Competing non-covalent interactions in alkali metal ion-acetonitrile-water clusters
,”
J. Phys. Chem. A
109
,
3880
3886
(
2005
).
35.
T. D.
Vaden
,
J. M.
Lisy
,
P. D.
Carnegie
,
E.
Dinesh Pillai
, and
M. A.
Duncan
, “
Infrared spectroscopy of the Li+(H2O)Ar complex: The role of internal energy and its dependence on ion preparation
,”
Phys. Chem. Chem. Phys.
8
,
3078
3082
(
2006
).
36.
D. J.
Miller
and
J. M.
Lisy
, “
Hydrated alkali-metal cations: Infrared spectroscopy and ab initio calculations of M+(H2O)x=2–5Ar cluster ions for M = Li, Na, K, and Cs
,”
J. Am. Chem. Soc.
130
,
15381
15392
(
2008
).
37.
D. J.
Miller
and
J. M.
Lisy
, “
Entropic effects on hydrated alkali-metal cations: Infrared spectroscopy and ab initio calculations of M+·(H2O)x=2–5 cluster ions for M = Li, Na, K, and Cs
,”
J. Am. Chem. Soc.
130
,
15393
15404
(
2008
).
38.
A. L.
Nicely
,
D. J.
Miller
, and
J. M.
Lisy
, “
Gas-phase vibrational spectroscopy and ab initio calculations of Rb+(H2O)n and Rb+(H2o)nAr cluster ions
,”
J. Mol. Spectrosc.
257
,
157
163
(
2009
).
39.
J. P.
Beck
and
J. M.
Lisy
, “
Infrared spectroscopy of hydrated alkali metal cations: Evidence of multiple photon absorption
,”
J. Chem. Phys.
135
,
044302
(
2011
).
40.
O.
Rodriguez
, Jr.
and
J. M.
Lisy
, “
Revisiting Li+(H2O)3–4Ar1 clusters: Evidence of high-energy conformers from infrared spectra
,”
J. Phys. Chem. Lett.
2
,
1444
1448
(
2011
).
41.
R. J.
Cooper
,
T. M.
Chang
, and
E. R.
Williams
, “
Hydrated alkali metal ions: Spectroscopic evidence for clathrates
,”
J. Phys. Chem. A
117
,
6571
6579
(
2013
).
42.
J. A.
Fournier
,
C. T.
Wolke
,
C. J.
Johnson
,
M. A.
Johnson
,
N.
Heine
,
S.
Gewinner
,
W.
Schöllkopf
,
T. K.
Esser
,
M. R.
Fagiani
,
H.
Knorke
, and
K. R.
Asmis
, “
Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+·(H2O)20 clusters
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
18132
18137
(
2014
).
43.
H.
Ke
,
C.
van der Linde
, and
J. M.
Lisy
, “
Insights into the structures of the gas-phase hydrated cations M+(H2O)nAr (M = Li, Na, K, Rb, and Cs; n = 3–5) using infrared photodissociation spectroscopy and thermodynamic analysis
,”
J. Phys. Chem. A
119
,
2037
2051
(
2015
).
44.
N.
Heine
,
M. R.
Fagiani
, and
K. R.
Asmis
, “
Disentangling the contribution of multiple isomers to the infrared spectrum of the protonated water heptamer
,”
J. Phys. Chem. Lett.
6
,
2298
2304
(
2015
).
45.
C. T.
Wolke
,
F. S.
Menges
,
N.
Tötsch
,
O.
Gorlova
,
J. A.
Fournier
,
G. H.
Weddle
,
M. A.
Johnson
,
N.
Heine
,
T. K.
Esser
,
H.
Knorke
,
K. R.
Asmis
,
A. B.
McCoy
,
D. J.
Arismendi-Arrieta
,
R.
Prosmiti
, and
F.
Paesani
, “
Thermodynamics of water dimer dissociation in the primary hydration shell of the iodide ion with temperature-dependent vibrational predissociation spectroscopy
,”
J. Phys. Chem. A
119
,
1859
1866
(
2015
).
46.
N.
Yang
,
C. H.
Duong
,
P. J.
Kelleher
,
M. A.
Johnson
, and
A. B.
McCoy
, “
Isolation of site-specific anharmonicities of individual water molecules in the I·(H2O)2 complex using tag-free, isotopomer selective IR–IR double resonance
,”
Chem. Phys. Lett.
690
,
159
171
(
2017
).
47.
N.
Yang
,
C. H.
Duong
,
P. J.
Kelleher
, and
M. A.
Johnson
, “
Unmasking rare, large-amplitude motions in D2-tagged I·(H2O)2 isotopomers with two-color, infrared–infrared vibrational predissociation spectroscopy
,”
J. Phys. Chem. Lett.
9
,
3744
3750
(
2018
).
48.
N.
Yang
,
C. H.
Duong
,
P. J.
Kelleher
,
A. B.
McCoy
, and
M. A.
Johnson
, “
Deconstructing water’s diffuse OH stretching vibrational spectrum with cold clusters
,”
Science
364
,
275
278
(
2019
).
49.
N.
Yang
,
C. H.
Duong
,
P. J.
Kelleher
, and
M. A.
Johnson
, “
Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks
,”
Nat. Chem.
12
,
159
164
(
2020
).
50.
J. E.
Combariza
,
N. R.
Kestner
, and
J.
Jortner
, “
Energy-structure relationships for microscopic solvation of anions in water clusters
,”
J. Chem. Phys.
100
,
2851
2864
(
1994
).
51.
D.
Feller
,
E. D.
Glendening
,
D. E.
Woon
, and
M. W.
Feyereisen
, “
An extended basis set ab initio study of alkali metal cation–water clusters
,”
J. Chem. Phys.
103
,
3526
3542
(
1995
).
52.
E. D.
Glendening
and
D.
Feller
, “
Cation-water interactions: The M+(H2O)n clusters for alkali metals, M = Li, Na, K, Rb, and Cs
,”
J. Phys. Chem.
99
,
3060
3067
(
1995
).
53.
S. S.
Xantheas
, “
Quantitative description of hydrogen bonding in chloride–water clusters
,”
J. Phys. Chem.
100
,
9703
9713
(
1996
).
54.
S. S.
Xantheas
and
L. X.
Dang
, “
Critical study of fluoride–water interactions
,”
J. Phys. Chem.
100
,
3989
3995
(
1996
).
55.
J.
Kim
,
H. M.
Lee
,
S. B.
Suh
,
D.
Majumdar
, and
K. S.
Kim
, “
Comparative ab initio study of the structures, energetics and spectra of X·(H2O)n=1–4 [X = F, Cl, Br, I] clusters
,”
J. Chem. Phys.
113
,
5259
5272
(
2000
).
56.
H. M.
Lee
,
D.
Kim
, and
K. S.
Kim
, “
Structures, spectra, and electronic properties of halide–water pentamers and hexamers, X(H2O)5,6 (X = F, Cl, Br, I): Ab initio study
,”
J. Chem. Phys.
116
,
5509
5520
(
2002
).
57.
F.
Schulz
and
B.
Hartke
, “
Dodecahedral clathrate structures and magic numbers in alkali cation microhydration clusters
,”
Chem. Phys. Chem
3
,
98
106
(
2002
).
58.
F.
Schulz
and
B.
Hartke
, “
Structural information on alkali cation microhydration clusters from infrared spectra
,”
Phys. Chem. Chem. Phys.
5
,
5021
5030
(
2003
).
59.
H. M.
Lee
,
P.
Tarakeshwar
,
J.
Park
,
M. R.
Kołaski
,
Y. J.
Yoon
,
H.-B.
Yi
,
W. Y.
Kim
, and
K. S.
Kim
, “
Insights into the structures, energetics, and vibrations of monovalent cation-(water) 1-6 clusters
,”
J. Phys. Chem. A
108
,
2949
2958
(
2004
).
60.
R.
Ayala
,
J. M.
Mart
́nez
ı,
R. R.
Pappalardo
, and
E.
Sánchez Marcos
, “
Study of the stabilization energies of halide–water clusters: An application of first-principles interaction potentials based on a polarizable and flexible model
,”
J. Chem. Phys.
121
,
7269
7275
(
2004
).
61.
J. L.
Rheinecker
and
J. M.
Bowman
, “
The calculated infrared spectrum of ClH2O using a full dimensional ab initio potential surface and dipole moment surface
,”
J. Chem. Phys.
124
,
131102
(
2006
).
62.
J.
Rheinecker
and
J. M.
Bowman
, “
The calculated infrared spectrum of ClH2O using a new full dimensional ab initio potential surface and dipole moment surface
,”
J. Chem. Phys.
125
,
133206
(
2006
).
63.
E.
Kamarchik
and
J. M.
Bowman
, “
Quantum vibrational analysis of hydrated ions using an ab initio potential
,”
J. Phys. Chem. A
114
,
12945
12951
(
2010
).
64.
X.-G.
Wang
and
T.
Carrington
, Jr.
, “
Rovibrational levels and wavefunctions of ClH2O
,”
J. Chem. Phys.
140
,
204306
(
2014
).
65.
J.
Sarka
,
D.
Lauvergnat
,
V.
Brites
,
A. G.
Császár
, and
C.
Léonard
, “
Rovibrational energy levels of the F(H2O) and F(D2O) complexes
,”
Phys. Chem. Chem. Phys.
18
,
17678
17690
(
2016
).
66.
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
67.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion-water interactions through many-body representations. Alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
68.
X.
Ma
,
N.
Yang
,
M. A.
Johnson
, and
W. L.
Hase
, “
Anharmonic densities of states for vibrationally excited I(H2O),(H2O)2, and I(H2O)2
,”
J. Chem. Theory Comput.
14
,
3986
3997
(
2018
).
69.
M.
Riera
,
S. E.
Brown
, and
F.
Paesani
, “
Isomeric equilibria, nuclear quantum effects, and vibrational spectra of M+·(H2On=1–3 clusters, with M = Li, Na, K, Rb, and Cs, through many-body representations
,”
J. Phys. Chem. A
122
,
5811
5821
(
2018
).
70.
P.
Bajaj
,
X.-G.
Wang
,
T.
Carrington
, Jr.
, and
F.
Paesani
, “
Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces
,”
J. Chem. Phys.
148
,
102321
(
2018
).
71.
P.
Bajaj
,
J. O.
Richardson
, and
F.
Paesani
, “
Ion-mediated hydrogen-bond rearrangement through tunneling in the iodide-dihydrate complex
,”
Nat. Chem.
11
,
367
(
2019
).
72.
P.
Bajaj
,
M.
Riera
,
J. K.
Lin
,
Y. E.
Mendoza Montijo
,
J.
Gazca
, and
F.
Paesani
, “
Halide ion microhydration: Structure, energetics, and spectroscopy of small halide–water clusters
,”
J. Phys. Chem. A
123
,
2843
2852
(
2019
).
73.
W. A.
Chupka
, “
Dissociation energies of some gaseous alkali halide complex ions and the hydrated ion K·(H2O)+
,”
J. Chem. Phys.
30
,
458
465
(
1959
).
74.
I.
Eliezer
and
P.
Krindel
, “
Calculations of alkali and halide ion hydration
,”
J. Chem. Phys.
57
,
1884
1891
(
1972
).
75.
M.
Arshadi
,
R.
Yamdagni
, and
P.
Kebarle
, “
Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions
,”
J. Phys. Chem.
74
,
1475
1482
(
1970
).
76.
F. F.
Abraham
,
M. R.
Mruzik
, and
G. M.
Pound
, “
The thermodynamics and structure of hydrated halide and alkali ions
,”
Faraday Discuss.
61
,
34
47
(
1976
).
77.
E.
Guàrdia
,
I.
Skarmoutsos
, and
M.
Masia
, “
On ion and molecular polarization of halides in water
,”
J. Chem. Theory Comput.
5
,
1449
1453
(
2009
).
78.
L.
Pauling
,
General Chemistry
(
Courier Corporation
,
1988
).
79.
S. M.
Ali
,
S.
De
, and
D. K.
Maity
, “
Microhydration of Cs+ ion: A density functional theory study on Cs+·(H2O)n clusters (n = 1–10)
,”
J. Chem. Phys.
127
,
044303
(
2007
).
80.
I.
Dzidic
and
P.
Kebarle
, “
Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n–1 + H2O = M+(H2O)n
,”
J. Phys. Chem.
74
,
1466
1474
(
1970
).
81.
M.
Sudolska
,
L.
Cantrel
, and
I.
Černušák
, “
Microhydration of Cs, CsOH, CsI, and Cs2I2 complexes with one to three H2O molecules of nuclear safety interest
,”
J. Mol.
20
,
2218
(
2014
).
82.
V.
Brites
,
J. M.
Lisy
, and
M.-P.
Gaigeot
, “
Infrared predissociation vibrational spectroscopy of Li+·(H2O)3–4Ar0,1, reanalyzed using density functional theory molecular dynamics
,”
J. Phys. Chem. A
119
,
2468
2474
(
2015
).
83.
O. M.
Cabarcos
,
C. J.
Weinheimer
, and
J. M.
Lisy
, “
Modeling internal energy distributions in ion clusters: Comparison between experiment and simulations
,”
J. Phys. Chem. A
103
,
8777
8791
(
1999
).
84.
T. K.
Esser
,
H.
Knorke
,
F.
Siro-Brigiano
,
D. R.
Galimberti
,
K. R.
Asmis
,
M.-P.
Gaigeot
, and
J. M.
Lisy
, “
Influence of argon and D2 tagging on the hydrogen bond networks in Cs+(H2O)3; kinetic trapping below 40 K,
Phys. Chem. Chem. Phys.
20
,
28476
28486
(
2018
).
85.
H.
Ke
,
C.
van der Linde
, and
J. M.
Lisy
, “
Insights into gas-phase structural conformers of hydrated rubidium and cesium cations, M+·(H2O)n·Ar (M = Rb, Cs; n = 3–5), using infrared photodissociation spectroscopy
,”
J. Phys. Chem. A
118
,
1363
1373
(
2014
).
86.
M.
Kołaski
,
H. M.
Lee
,
Y. C.
Choi
,
K. S.
Kim
,
P.
Tarakeshwar
,
D. J.
Miller
, and
J. M.
Lisy
, “
Structures, energetics, and spectra of aqua-cesium (I) complexes: An ab initio and experimental study
,”
J. Chem. Phys.
126
,
074302
(
2007
).
87.
D. J.
Miller
and
J. M.
Lisy
, “
Hydration of ion-biomolecule complexes: Ab initio calculations and gas-phase vibrational spectroscopy of K+(indole)m·(H2o)n
,”
J. Chem. Phys.
124
,
184301
(
2006
).
88.
J. D.
Rodriguez
and
J. M.
Lisy
, “
Infrared spectroscopy of gas-phase hydrated K+:18-crown-6 complexes: Evidence for high energy conformer trapping using the argon taggin method
,”
Int. J. Mass Spectrom.
283
,
135
139
(
2009
).
89.
T. D.
Vaden
,
C. J.
Weinheimer
, and
J. M.
Lisy
, “
Evaporatively cooled M+·(H2O)·Ar cluster ions: Infrared spectroscopy and internal energy simulations
,”
J. Chem. Phys.
121
,
3102
3107
(
2004
).
90.
C. J.
Weinheimer
and
J. M.
Lisy
, “
Vibrational predissociation spectroscopy of Cs+·(H2O)1–5
,”
J. Chem. Phys.
105
,
2938
2941
(
1996
).
91.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
, “
Water molecule interactions
,”
J. Chem. Phys.
53
,
4544
4554
(
1970
).
92.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
93.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
, “
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
,”
J. Chem. Phys.
131
,
194105
(
2009
).
94.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
, “
Interaction energies of large clusters from many-body expansion
,”
J. Chem. Phys.
135
,
224102
(
2011
).
95.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
96.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
97.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
98.
J. G.
Hill
and
K. A.
Peterson
, “
Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements
,”
J. Chem. Phys.
147
,
244106
(
2017
).
99.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
100.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
(
4
),
2246
2257
(
2020
).
101.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a “first principles” water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
102.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
103.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
104.
F.
Paesani
, “
Getting the right answers for the right reasons: Toward predictive molecular simulations of water with many-body potential energy functions
,”
Acc. Chem. Res.
49
,
1844
1851
(
2016
).
105.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
106.
J. O.
Richardson
,
C.
Pérez
,
S.
Lobsiger
,
A. A.
Reid
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
,
D. J.
Wales
,
B. H.
Pate
, and
S. C.
Althorpe
, “
Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism
,”
Science
351
,
1310
1313
(
2016
).
107.
W. T. S.
Cole
,
J. D.
Farrell
,
D. J.
Wales
, and
R. J.
Saykally
, “
Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm
,”
Science
352
,
1194
1197
(
2016
).
108.
S. E.
Brown
,
A. W.
Götz
,
X.
Cheng
,
R. P.
Steele
,
V. A.
Mandelshtam
, and
F.
Paesani
, “
Monitoring water clusters “melt” through vibrational spectroscopy
,”
J. Am. Chem. Soc.
139
,
7082
7088
(
2017
).
109.
G. R.
Medders
and
F.
Paesani
, “
Infrared and Raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics
,”
J. Chem. Theory Comput.
11
,
1145
1154
(
2015
).
110.
S. C.
Straight
and
F.
Paesani
, “
Exploring electrostatic effects on the hydrogen bond network of liquid water through many-body molecular dynamics
,”
J. Phys. Chem. B
120
,
8539
(
2016
).
111.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
112.
K. M.
Hunter
,
F. A.
Shakib
, and
F.
Paesani
, “
Disentangling coupling effects in the infrared spectra of liquid water
,”
J. Phys. Chem. B
122
,
10754
10761
(
2018
).
113.
G. R.
Medders
and
F.
Paesani
, “
Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum
,”
J. Am. Chem. Soc.
138
,
3912
3919
(
2016
).
114.
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
122
,
4356
4365
(
2018
).
115.
C. H.
Pham
,
S. K.
Reddy
,
K.
Chen
,
C.
Knight
, and
F.
Paesani
, “
Many-body interactions in ice
,”
J. Chem. Theory Comput.
13
,
1778
1784
(
2017
).
116.
D. R.
Moberg
,
S. C.
Straight
,
C.
Knight
, and
F.
Paesani
, “
Molecular origin of the vibrational structure of ice Ih
,”
J. Phys. Chem. Lett.
8
,
2579
2583
(
2017
).
117.
D. R.
Moberg
,
P. J.
Sharp
, and
F.
Paesani
, “
Molecular-level interpretation of vibrational spectra of ordered ice phases
,”
J. Phys. Chem. B
122
,
10572
10581
(
2018
).
118.
Y.
Wang
,
V.
Babin
,
J. M.
Bowman
, and
F.
Paesani
, “
The water hexamer: Cage, prism, or both. Full dimensional quantum simulations say both
,”
J. Am. Chem. Soc.
134
,
11116
11119
(
2012
).
119.
V.
Babin
and
F.
Paesani
, “
The curious case of the water hexamer: Cage vs prism
,”
Chem. Phys. Lett.
580
,
1
8
(
2013
).
120.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
121.
R. W.
Hall
and
B. J.
Berne
, “
Nonergodicity in path integral molecular dynamics
,”
J. Chem. Phys.
81
,
3641
3643
(
1984
).
122.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé-Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
123.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2017
).
124.
J. J.
Talbot
,
X.
Cheng
,
J. D.
Herr
, and
R. P.
Steele
, “
Vibrational signatures of electronic properties in oxidized water: Unraveling the anomalous spectrum of the water dimer cation
,”
J. Am. Chem. Soc.
138
,
11936
11945
(
2016
).
125.
J. J.
Talbot
,
N.
Yang
,
M.
Huang
,
C. H.
Duong
,
A. B.
McCoy
,
R. P.
Steele
, and
M. A.
Johnson
, “
Spectroscopic signatures of mode-dependent tunnel splitting in the iodide–water binary complex
,”
J. Phys. Chem. A
124
,
2991
3001
(
2020
).
126.
X.
Cheng
and
R. P.
Steele
, “
Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
,”
J. Chem. Phys.
141
,
104105
(
2014
).
127.
J. M.
Bowman
, “
The self-consistent-field approach to polyatomic vibrations
,”
Acc. Chem. Res.
19
,
202
208
(
1986
).
128.
O.
Christiansen
, “
Vibrational structure theory: New vibrational wave function methods for calculation of anharmonic vibrational energies and vibrational contributions to molecular properties
,”
Phys. Chem. Chem. Phys.
9
,
2942
2953
(
2007
).
129.
N.
Matsunaga
,
G. M.
Chaban
, and
R. B.
Gerber
, “
Degenerate perturbation theory corrections for the vibrational self-consistent field approximation: Method and applications
,”
J. Chem. Phys.
117
,
3541
3547
(
2002
).
130.
H.
Liu
,
Y.
Wang
, and
J. M.
Bowman
, “
Local-monomer calculations of the intramolecular IR spectra of the cage and prism isomers of HOD·(D2O)5 and HOD and D2O ice Ih
,”
J. Phys. Chem. B
118
,
14124
14131
(
2014
).
131.
H.
Liu
,
Y.
Wang
, and
J. M.
Bowman
, “
Quantum local monomer IR spectrum of liquid D2O at 300 K from 0 to 4000 cm−1 is in near-quantitative agreement with experiment
,”
J. Phys. Chem. B
120
,
2824
2828
(
2016
).
132.
J. S.
Mancini
and
J. M.
Bowman
, “
On-the-fly ab initio calculations of anharmonic vibrational frequencies: Local-monomer theory and applications to HCl
,”
J. Chem. Phys.
139
,
164115
(
2013
).
133.
C.
Qu
and
J. M.
Bowman
, “
Ab initio, embedded local-monomer calculations of methane vibrational energies in clathrate hydrates
,”
J. Phys. Chem. C
120
,
3167
3175
(
2016
).
134.
Y.
Wang
and
J. M.
Bowman
, “
Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters
,”
J. Chem. Phys.
134
,
154510
(
2011
).
135.
Y.
Wang
and
J. M.
Bowman
, “
IR spectra of the water hexamer: Theory, with inclusion of the monomer bend overtone, and experiment are in agreement
,”
J. Phys. Chem. Lett.
4
,
1104
1108
(
2013
).
136.
Q.
Yu
and
J. M.
Bowman
, “
Vibrational second-order perturbation theory (VPT2) using local monomer normal modes
,”
Mol. Phys.
113
,
3964
3971
(
2015
).
137.
X.
Cheng
,
J. J.
Talbot
, and
R. P.
Steele
, “
Tuning vibrational mode localization with frequency windowing
,”
J. Chem. Phys.
145
,
124112
(
2016
).
138.
Y.
Wang
and
J. M.
Bowman
, “
Coupled-monomers in molecular assemblies: Theory and application to the water tetramer, pentamer, and ring hexamer
,”
J. Chem. Phys.
136
,
144113
(
2012
).
139.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
1586
(
1996
).
140.
T.
Leininger
,
A.
Nicklass
,
W.
Küchle
,
H.
Stoll
,
M.
Dolg
, and
A.
Bergner
, “
The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs)
,”
Chem. Phys. Lett.
255
,
274
280
(
1996
).
141.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
142.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
143.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kús
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
 III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Dop
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
P. A.
Pieniazek
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
N.
Sergueev
,
S. M.
Sharada
,
S.
Sharmaa
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
V.
Vanovschi
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xua
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).

Supplementary Material

You do not currently have access to this content.