Recent studies of the weakly bound anisole⋯CH4 complex found a dual mode of binding, featuring both C/H⋯π and C/H⋯O noncovalent interactions. In this work, we examine the dissociation energies of related aniline⋯(CH4)n (n = 1, 2) van der Waals clusters, where both C/H⋯π and C/H⋯N interactions are possible. Using a combination of theory and experiments that include mass-selected two-color resonant two-photon ionization spectroscopy, two-color appearance potential (2CAP) measurements, and velocity-mapped ion imaging (VMI), we derive the dissociation energies of both complexes in the ground (S0), excited (S1), and cation radical (D0) states. As the amide group is non-planar in the ground state, the optimized ground state geometry of the aniline⋯CH4 1:1 complex shows two isomers, each with the methane positioned above the aniline ring. The observed redshift of the electronic origin from the aniline monomer is consistent with TDDFT calculations for the more stable isomer, where the methane sits on the same face as the amino hydrogens. The dissociation energies of the 1:1 complex, obtained from 2CAP measurements, are in good agreement with the calculated theoretical values from selected density functional theory methods. VMI data for the 1:1 complex gave a binding energy value overestimated by ∼179 cm−1 when compared to the 2CAP results, indicating that dissociative ionization selectively populates an excited vibrational level of the aniline cation radical. Given that the electron donating ability of aromatic substituents trends as –NH2 > –OCH3 > –CH3, it is noteworthy that the strength of methane binding also trends in this order, as found by experiment (dissociation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory (PBE0-D3/def2-QZVPPD, in kJ/mol: 6.9 > 6.0 > 5.0). For the 1:2 complex of aniline and methane, calculations predict that the more stable conformer is the one where the two methane molecules lie on opposite faces of the ring, consistent with the observed redshift of the electronic origin. Unlike the anisole–methane 1:2 complex, which shows an enhanced dissociation energy for the loss of one methane in comparison with the 1:1 complex, here, we find that the energy required to remove one methane from the ground state aniline–methane 1:2 complex is smaller than that of the 1:1 complex, consistent with theoretical expectations.

1.
P.
Needham
, “
Hydrogen bonding: Homing in on a tricky chemical concept
,”
Stud. Hist. Philos. Sci.
44
(
1
),
51
65
(
2013
).
2.
R.
Castellano
, “
Special Issue: Intramolecular hydrogen bonding
,”
Molecules
19
(
10
),
15783
15785
(
2014
).
3.
A.
Kovacs
and
Z.
Varga
, “
Halogen acceptors in hydrogen bonding
,”
Coord. Chem. Rev.
250
(
5-6
),
710
727
(
2006
).
4.
D.
Kokkin
,
M.
Ivanov
,
J.
Loman
,
J. Z.
Cai
,
B.
Uhler
,
N.
Reilly
,
R.
Rathore
, and
S. A.
Reid
, “
π-π stacking vs. C–H/π interaction: Excimer formation and charge resonance stabilization in van der Waals clusters of 9, 9′-dimethylfluorene
,”
J. Chem. Phys.
149
(
13
),
134314
(
2018
).
5.
M. V.
Ivanoy
,
N.
Reilly
,
B.
Uhler
,
D.
Kokkin
,
R.
Rathore
, and
S. A.
Reid
, “
Cofacially arrayed polyfluorenes: Spontaneous formation of π-stacked assemblies in the gas phase
,”
J. Phys. Chem. Lett.
8
(
21
),
5272
5276
(
2017
).
6.
C.
Trujillo
and
G.
Sánchez-Sanz
, “
A study of π-π stacking interactions and aromaticity in polycyclic aromatic hydrocarbon/nucleobase complexes
,”
ChemPhysChem
17
(
3
),
395
405
(
2016
).
7.
S. A.
Reid
,
S.
Nyambo
,
L.
Muzangwa
, and
B.
Uhler
, “
π-stacking, C–H/π, and halogen bonding interactions in bromobenzene and mixed bromobenzene-benzene clusters
,”
J. Phys. Chem. A
117
(
50
),
13556
13563
(
2013
).
8.
D.
Kokkin
,
M. V.
Ivanov
,
J.
Loman
,
J.-Z.
Cai
,
R.
Rathore
, and
S. A.
Reid
, “
Strength of π-stacking, from neutral to cation: Precision measurement of binding energies in an isolated π-stacked dimer
,”
J. Phys. Chem. Lett.
9
(
8
),
2058
2061
(
2018
).
9.
J. T.
Makuvaza
,
D. L.
Kokkin
,
J. L.
Loman
, and
S. A.
Reid
, “
C–H/π and C–H–O interactions in concert: A study of the anisole–methane complex using resonant ionization and velocity mapped ion imaging
,”
J. Phys. Chem. A
123
(
13
),
2874
2880
(
2019
).
10.
K.
Miyamura
,
A.
Mihara
,
T.
Fujii
,
Y.
Gohshi
, and
Y.
Ishii
, “
Unusually strong-interactions mediated by both π-π stacking and CH-π interactions present in the dimer of nickel(II) complex coordinated with N-butyl-substituted salen
,”
J. Am. Chem. Soc.
117
(
8
),
2377
2378
(
1995
).
11.
L.
Muzangwa
,
S.
Nyambo
,
B.
Uhler
, and
S. A.
Reid
, “
On π-stacking, C–H/π, and halogen bonding interactions in halobenzene clusters: Resonant two-photon ionization studies of chlorobenzene
,”
J. Chem. Phys.
137
(
18
),
184307
(
2012
).
12.
S.
Jain
and
K.
Vanka
, “
Can the solvent enhance the rate of chemical reactions through C–H/π interactions? Insights from theory
,”
Phys. Chem. Chem. Phys.
21
(
27
),
14821
14831
(
2019
).
13.
M.
Brandl
,
K.
Lindauer
,
M.
Meyer
, and
J.
Suhnel
, “
C–H⋯O and C–H⋯N interactions in RNA structures
,”
Theor. Chem. Acc.
101
(
1-3
),
103
113
(
1999
).
14.
K. N.
Houk
,
S.
Menzer
,
S. P.
Newton
,
F. M.
Raymo
,
J. F.
Stoddart
, and
D. J.
Williams
, “
[C–H⋯O] interactions as a control element in supramolecular complexes: Experimental and theoretical evaluation of receptor affinities for the binding of bipyridinium-based guests by catenated hosts
,”
J. Am. Chem. Soc.
121
(
7
),
1479
1487
(
1999
).
15.
G.
Cavallo
,
P.
Metrangolo
,
T.
Pilati
,
G.
Resnati
,
M.
Sansotera
, and
G.
Terraneo
, “
Halogen bonding: A general route in anion recognition and coordination
,”
Chem. Soc. Rev.
39
(
10
),
3772
3783
(
2010
).
16.
P.
Politzer
,
P.
Lane
,
M. C.
Concha
,
Y.
Ma
, and
J. S.
Murray
, “
An overview of halogen bonding
,”
J. Mol. Model.
13
(
2
),
305
311
(
2007
).
17.
S.
Sarkhel
and
G. R.
Desiraju
, “
N–H⋯O, O–H⋯O, and C–H⋯O hydrogen bonds in protein-ligand complexes: Strong and weak interactions in molecular recognition
,”
Proteins: Struct., Funct., Bioinf.
54
(
2
),
247
259
(
2004
).
18.
Y.
Lu
,
T.
Shi
,
Y.
Wang
,
H.
Yang
,
X.
Yan
,
X.
Luo
,
H.
Jiang
, and
W.
Zhu
, “
Halogen bonding—A novel interaction for rational drug design?
,”
J. Med. Chem.
52
(
9
),
2854
2862
(
2009
).
19.
V.
Amendola
,
L.
Fabbrizzi
, and
L.
Mosca
, “
Anion recognition by hydrogen bonding: Urea-based receptors
,”
Chem. Soc. Rev.
39
(
10
),
3889
3915
(
2010
).
20.
M. P.
Parker
,
C. A.
Murray
,
L. R.
Hart
,
B. W.
Greenland
,
W.
Hayes
,
C. J.
Cardin
, and
H. M.
Colquhoun
, “
Mutual complexation between π–π stacked molecular tweezers
,”
Cryst. Growth Des.
18
(
1
),
386
392
(
2018
).
21.
P.
Metrangolo
,
F.
Meyer
,
T.
Pilati
,
G.
Resnati
, and
G.
Terraneo
, “
Halogen bonding in supramolecular chemistry
,”
Angew. Chem., Int. Ed.
47
(
33
),
6114
6127
(
2008
).
22.
D. H.
Levy
,
C. A.
Haynam
, and
D. V.
Brumbaugh
, “
Spectroscopy and photophysics of organic clusters
,”
Faraday Discuss. Chem. Soc.
73
,
137
151
(
1982
).
23.
C. Y.
Ng
, “
Molecular-beam photoionization studies of molecules and clusters
,”
Adv. Chem. Phys.
52
,
263
362
(
2007
).
24.
F. G.
Celii
and
K. C.
Janda
, “
Vibrational spectroscopy, photochemistry, and photophysics of molecular clusters
,”
Chem. Rev.
86
(
3
),
507
520
(
1986
).
25.
J. R.
Cable
,
M. J.
Tubergen
, and
D. H.
Levy
, “
The electronic-spectra of small peptides in the gas-phase
,”
Faraday Discuss. Chem. Soc.
86
,
143
152
(
1988
).
26.
U.
Buck
, “
Structure, energetics, dynamics. Structure and dynamics of size selected molecular clusters
,”
Ber. Bunsen. Phys. Chem.
96
(
9
),
1275
1284
(
1992
).
27.
R. N.
Pribble
,
C.
Gruenloh
, and
T. S.
Zwier
, “
The ultraviolet and infrared spectroscopy of (benzene)2-(CH3OH)3 isomeric clusters
,”
Chem. Phys. Lett.
262
(
5
),
627
632
(
1996
).
28.
C. J.
Gruenloh
,
J. R.
Carney
,
F. C.
Hagemeister
,
C. A.
Arrington
,
T. S.
Zwier
,
S. Y.
Fredericks
,
J. T.
Wood
, and
K. D.
Jordan
, “
Resonant ion-dip infrared spectroscopy of the S4 and D2d wafer octamers in benzene-(water)8 and benzene2-(water)8
,”
J. Chem. Phys.
109
(
16
),
6601
6614
(
1998
).
29.
F. C.
Hagemeister
,
C. J.
Gruenloh
, and
T. S.
Zwier
, “
Resonant ion-dip infrared spectroscopy of benzene-(water)n–(methanol)m clusters with n + m = 4, 5
,”
Chem. Phys.
239
(
1-3
),
83
96
(
1998
).
30.
C. J.
Gruenloh
,
F. C.
Hagemeister
,
J. R.
Carney
, and
T. S.
Zwier
, “
Resonant ion-dip infrared spectroscopy of ternary benzene–(water)n(methanol)m hydrogen-bonded clusters
,”
J. Phys. Chem. A
103
(
4
),
503
513
(
1999
).
31.
G. M.
Florio
,
C. J.
Gruenloh
,
R. C.
Quimpo
, and
T. S.
Zwier
, “
The infrared spectroscopy of hydrogen-bonded bridges: 2-pyridone-(water)n and 2-hydroxypyridine-(water)n clusters, n = 1, 2
,”
J. Chem. Phys.
113
(
24
),
11143
11153
(
2000
).
32.
D. R.
Borst
,
J. R.
Roscioli
,
D. W.
Pratt
,
G. M.
Florio
,
T. S.
Zwier
,
A.
Muller
, and
S.
Leutwyler
, “
Hydrogen bonding and tunneling in the 2-pyridone·2-hydroxypyridine dimer. Effect of electronic excitation
,”
Chem. Phys.
283
(
1-2
),
341
354
(
2002
).
33.
D. J.
Moll
,
G. R.
Parker
, and
A.
Kuppermann
, “
Time-resolved two-color photoacoustic and multiphoton ionization spectroscopy of aniline
,”
J. Chem. Phys.
80
(
10
),
4808
4816
(
1984
).
34.
M. A.
Smith
,
J. W.
Hager
, and
S. C.
Wallace
, “
Two color photoionization spectroscopy of jet cooled aniline: Vibrational frequencies of the aniline approximately-X̃2B1 radical cation
,”
J. Chem. Phys.
80
(
7
),
3097
3105
(
1984
).
35.
J.
Lemaire
,
I.
Dimicoli
,
F.
Piuzzi
, and
R.
Botter
, “
Two-color photoionization spectroscopy of polyatomic-molecules and cations: Aniline, phenol and phenetole
,”
Chem. Phys.
115
(
1
),
119
128
(
1987
).
36.
J. A.
Syage
and
J. E.
Wessel
, “
Ion dip spectroscopy of higher excited vibronic states of aniline
,”
J. Chem. Phys.
85
(
11
),
6806
6807
(
1986
).
37.
K.
Yamanouchi
,
S.
Isogai
,
S.
Tsuchiya
, and
K.
Kuchitsu
, “
Laser-induced fluorescence spectroscopy of He-, Ne-, Ar-, and Kr-aniline van der Waals complexes in a supersonic free jet. Analysis of rotational contours
,”
Chem. Phys.
116
(
1
),
123
132
(
1987
).
38.
M.
Becucci
,
G.
Pietraperzia
,
E.
Castellucci
, and
P.
Brechignac
, “
Dynamics of vibronically excited states of the aniline–neon van der Waals complex: Vibrational predissociation versus intramolecular vibrational redistribution
,”
Chem. Phys. Lett.
390
(
1-3
),
29
34
(
2004
).
39.
M.
Becucci
,
G.
Pietraperzia
,
N. M.
Lakin
,
E.
Castellucci
, and
P.
Brechignac
, “
High-resolution spectroscopy of aniline-rare gas van der Waals complexes: Results and comparison with theoretical predictions
,”
Chem. Phys. Lett.
260
(
1-2
),
87
94
(
1996
).
40.
R. G.
Satink
,
J. M.
Bakker
,
G.
Meijer
, and
G.
von Helden
, “
Vibrational lifetimes of aniline–noble gas complexes
,”
Chem. Phys. Lett.
359
(
1-2
),
163
168
(
2002
).
41.
E. J.
Bieske
,
M. W.
Rainbird
, and
A. E. W.
Knight
, “
The van der Waals vibrations of aniline-(argon)2 in the S1 electronic state
,”
J. Chem. Phys.
94
(
11
),
7019
7028
(
1991
).
42.
E. J.
Bieske
,
A. S.
Uichanco
,
M. W.
Rainbird
, and
A. E. W.
Knight
, “
Mass selected resonance enhanced multiphoton ionization spectroscopy of aniline–Arn (n = 3, 4, 5, …) van der Waals complexes
,”
J. Chem. Phys.
94
(
11
),
7029
7037
(
1991
).
43.
B.
Coutant
and
P.
Brechignac
, “
Anomalous complex shift of low-frequency out-of-plane vibrations in aniline-M van der Waals complexes (M = He, Ne, Ar)
,”
J. Chem. Phys.
100
(
10
),
7087
7092
(
1994
).
44.
S.
Douin
,
P.
Hermine
,
P.
Parneix
, and
P.
Brechignac
, “
Site specificity of solvent shifts as revealed by ionization threshold in aniline–(argon)n clusters
,”
J. Chem. Phys.
97
(
3
),
2160
2162
(
1992
).
45.
P.
Parneix
and
P.
Bréchignac
, “
The hindering of the inversion motion in the van der Waals aniline-Arn clusters: An adiabatic molecular dynamics simulation for n = 1–3
,”
J. Chem. Phys.
108
(
5
),
1932
1939
(
1998
).
46.
P.
Parneix
,
P.
Bréchignac
, and
F. G.
Amar
, “
Isomer specific evaporation rates: The case of aniline-Ar2
,”
J. Chem. Phys.
104
(
3
),
983
991
(
1996
).
47.
P.
Parneix
,
N.
Halberstadt
,
P.
Bréchignac
,
F. G.
Amar
,
A.
van der Avoird
, and
J. W. I.
van Bladel
, “
Quantum calculation of vibrational states in the aniline-argon van der Waals cluster
,”
J. Chem. Phys.
98
(
4
),
2709
2719
(
1993
).
48.
H.
Piest
,
G.
von Helden
, and
G.
Meijer
, “
Infrared spectroscopy of jet-cooled neutral and ionized aniline-Ar
,”
J. Chem. Phys.
110
(
4
),
2010
2015
(
1999
).
49.
J.
Makarewicz
, “
Structure and dynamics of the aniline-argon complex as derived from its potential energy surface
,”
J. Phys. Chem. A
111
(
8
),
1498
1507
(
2007
).
50.
T.
Pino
,
P.
Parneix
,
S.
Douin
, and
P.
Bréchignac
, “
Solvation dynamics of large van der Waals aniline-Arn clusters: Experiment and theory
,”
J. Phys. Chem. A
108
(
36
),
7364
7371
(
2004
).
51.
S.
Douin
,
P.
Parneix
, and
P.
Brechignac
, “
Solvent shift of the ionization-potential of the aniline-argon system
,”
Z. Phys. D: At., Mol. Clusters
21
(
4
),
343
348
(
1991
).
52.
T.
Nakanaga
,
K.
Sugawara
,
K.
Kawamata
, and
F.
Ito
, “
Infrared depletion spectroscopy of aniline-NH3 and aniline-NH3+ clusters in a supersonic jet
,”
Chem. Phys. Lett.
267
(
5-6
),
491
495
(
1997
).
53.
J. A.
Fernandez
and
E. R.
Bernstein
, “
Structure, binding energy, and intermolecular modes for the aniline/ammonia van der Waals clusters
,”
J. Chem. Phys.
106
(
8
),
3029
3037
(
1997
).
54.
M.
Foltin
,
G. J.
Stueber
, and
E. R.
Bernstein
, “
Dynamics of neutral cluster growth and cluster ion fragmentation for toluene/water, aniline/argon, and 4-fluorostyrene/argon clusters: Covariance mapping of the mass spectral data
,”
J. Chem. Phys.
109
(
11
),
4342
4360
(
1998
).
55.
I.
León
,
P. F.
Arnáiz
,
I.
Usabiaga
, and
J. A.
Fernández
, “
Mass resolved IR spectroscopy of aniline-water aggregates
,”
Phys. Chem. Chem. Phys.
18
(
39
),
27336
27341
(
2016
).
56.
E. R.
Bernstein
,
K.
Law
, and
M.
Schauer
, “
Molecular supersonic jet studies of aniline solvation by helium and methane
,”
J. Chem. Phys.
80
(
2
),
634
644
(
1984
).
57.
M. R.
Nimlos
,
M. A.
Young
,
E. R.
Bernstein
, and
D. F.
Kelley
, “
Vibrational dynamics of aniline(Ar)1 and aniline(CH4)1 clusters
,”
J. Chem. Phys.
91
(
9
),
5268
5277
(
1989
).
58.
X.
Zhang
,
J. M.
Smith
, and
J. L.
Knee
, “
High resolution threshold photoelectron spectroscopy of aniline and aniline van der Waals complexes
,”
J. Chem. Phys.
97
(
5
),
2843
2860
(
1992
).
59.
J. M.
Smith
,
X.
Zhang
, and
J. L.
Knee
, “
Aniline-CH4 S1 vibrational dynamics studied with picosecond photoelectron spectroscopy
,”
J. Chem. Phys.
99
(
4
),
2550
2559
(
1993
).
60.
P. K.
Chowdhury
,
K.
Sugawara
,
T.
Nakanaga
, and
H.
Takeo
, “
Structure of the aniline–benzene and aniline–cyclohexane clusters based on infrared depletion spectroscopy
,”
Chem. Phys. Lett.
285
(
1-2
),
77
82
(
1998
).
61.
K.
Ohashi
,
Y.
Inokuchi
,
H.
Izutsu
,
K.
Hino
,
N.
Yamamoto
,
N.
Nishi
, and
H.
Sekiya
, “
Electronic and vibrational spectra of aniline–benzene hetero-dimer and aniline homo-dimer ions
,”
Chem. Phys. Lett.
323
(
1-2
),
43
48
(
2000
).
62.
K.
Ohashi
,
Y.
Inokuchi
,
N.
Nishi
, and
H.
Sekiya
, “
Intermolecular interactions in aniline–benzene hetero-trimer and aniline homo-trimer ions
,”
Chem. Phys. Lett.
357
(
3-4
),
223
229
(
2002
).
63.
P. K.
Chowdhury
, “
Infrared depletion spectroscopy of the hydrogen-bonded aniline–diethylamine (C6H5–NH2⋯NHC4H10) complex produced in supersonic jet
,”
J. Phys. Chem. A
107
(
30
),
5692
5696
(
2003
).
64.
K.
Kawamata
,
P. K.
Chowdhury
,
F.
Ito
,
K.-i.
Sugawara
, and
T.
Nakanaga
, “
Investigation of the N–H stretching vibrations of the aniline–pyrrole binary complex and its cation by infrared depletion spectroscopy
,”
J. Phys. Chem. A
102
(
25
),
4788
4793
(
1998
).
65.
T.
Nakanaga
and
F.
Ito
, “
Investigations on the hydrogen bond interaction in the aniline–furan complex and its cation by infrared depletion spectroscopy
,”
J. Phys. Chem. A
103
(
28
),
5440
5445
(
1999
).
66.
N.
Yamamoto
,
K.
Hino
,
K.
Mogi
,
K.
Ohashi
,
Y.
Sakai
, and
H.
Sekiya
, “
Hole-burning spectroscopy and ab initio calculations for the aniline dimer
,”
Chem. Phys. Lett.
342
(
3-4
),
417
424
(
2001
).
67.
D.
Schemmel
and
M.
Schutz
, “
Molecular aniline clusters. II. The low-lying electronic excited states
,”
J. Chem. Phys.
133
(
13
),
134307
(
2010
).
68.
D.
Schemmel
and
M.
Schutz
, “
Molecular aniline clusters. I. The electronic ground state
,”
J. Chem. Phys.
132
(
17
),
174303
(
2010
).
69.
K.-i.
Sugawara
,
J.
Miyawaki
,
T.
Nakanaga
,
H.
Takeo
,
G.
Lembach
,
S.
Djafari
,
H.-D.
Barth
, and
B.
Brutschy
, “
Infrared depletion spectroscopy of the aniline dimer
,”
J. Phys. Chem.
100
(
43
),
17145
17147
(
1996
).
70.
R.
Montero
,
I.
Lamas
,
I.
León
,
J. A.
Fernández
, and
A.
Longarte
, “
Excited state dynamics of aniline homoclusters
,”
Phys. Chem. Chem. Phys.
21
(
6
),
3098
3105
(
2019
).
71.
V. R.
Thalladi
,
A.
Gehrke
, and
R.
Boese
, “
C–H group acidity and the nature of C–H⋯N interactions: Crystal structural analysis of pyrazine and methyl substituted pyrazines
,”
New J. Chem.
24
(
6
),
463
470
(
2000
).
72.
N.-B.
Wong
,
Y.-S.
Cheung
,
D. Y.
Wu
,
Y.
Ren
,
X.
Wang
,
A. M.
Tian
, and
W.-K.
Li
, “
A theoretical study of the C–H⋯N hydrogen bond in the methane–ammonia complex
,”
J. Mol. Struct.: THEOCHEM
507
,
153
156
(
2000
).
73.
C. E.
Marjo
,
R.
Bishop
,
D. C.
Craig
, and
M. L.
Scudder
, “
Crystal engineering involving C–H⋯N weak hydrogen bonds: A diquinoxaline lattice inclusion host with a preference for polychlorocarbon guests
,”
Eur. J. Org. Chem.
2001
(
5
),
863
873
.
74.
C. S.
Lai
,
F.
Mohr
, and
E. R. T.
Tiekink
, “
The importance of C–H⋯N, C–H⋯π and π⋯π interactions in the crystal packing of the isomeric N1,N4-bis((pyridine-n-yl)methylene)-cyclohexane-1,4-diamines, n = 2, 3 and 4
,”
CrystEngComm
8
(
12
),
909
915
(
2006
).
75.
S. F.
Alshahateet
,
R.
Bishop
,
D. C.
Craig
, and
M. L.
Scudder
, “
Dimeric C–H⋯N interactions and the crystal engineering of new inclusion host molecules
,”
CrystEngComm
48
,
225
(
2001
).
76.
E.
Bosch
, “
Role of sp-C–H⋯N hydrogen bonding in crystal engineering
,”
Cryst. Growth Des.
10
(
8
),
3808
3813
(
2010
).
77.
M.
Schauer
and
E. R.
Bernstein
, “
Molecular jet study of the solvation of benzene by methane, ethane, and propane
,”
J. Chem. Phys.
82
(
2
),
726
735
(
1985
).
78.
M.
Schauer
,
K.
Law
, and
E. R.
Bernstein
, “
Supersonic molecular jet studies of toluene–helium and toluene-methane clusters
,”
J. Chem. Phys.
81
(
1
),
49
56
(
1984
).
79.
M.
Schauer
,
K. S.
Law
, and
E. R.
Bernstein
, “
Molecular jet study of the solvation of toluene by methane, ethane, and propane
,”
J. Chem. Phys.
82
(
2
),
736
746
(
1985
).
80.
J. A.
Menapace
and
E. R.
Bernstein
, “
van der Waals modes of solute solvent clusters: Benzene-methane, benzene-deuteriomethane, and benzene-carbon tetrafluoride
,”
J. Phys. Chem.
91
(
11
),
2843
2848
(
1987
).
81.
S.
Karthikeyan
,
V.
Ramanathan
, and
B. K.
Mishra
, “
Influence of the substituents on the CH⋯π interaction: Benzene-methane complex
,”
J. Phys. Chem. A
117
(
30
),
6687
6694
(
2013
).
82.
J.
Li
and
R.-Q.
Zhang
, “
Strong orbital deformation due to CH–π interaction in the benzene–methane complex
,”
Phys. Chem. Chem. Phys.
17
(
44
),
29489
29491
(
2015
).
83.
W. E.
Hatton
,
D. L.
Hildenbrand
,
G. C.
Sinke
, and
D. R.
Stull
, “
Chemical thermodynamic properties of aniline
,”
J. Chem. Eng. Data
7
,
229
231
(
1962
).
84.
F.
Kraus
,
E.
Gregorek
, and
H.
Weyssenh
, “
Absolute fluorescence lifetimes and quantum yields of substituted anilines in gas-phase
,”
Z. Phys. Chem.
82
(
1-4
),
139
146
(
1972
).
85.
H. V.
Weyssenhoff
and
F.
Kraus
, “
Vibronic structure in fluorescence lifetimes and quantum yields of aniline vapor
,”
J. Chem. Phys.
54
(
6
),
2387
(
1971
).
86.
H.
Krieg
and
S.
Grimme
, “
Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob’s ladder is not reversed!
,”
Mol. Phys.
108
(
19-20
),
2655
2666
(
2010
).
87.
X.
Song
,
M.
Yang
,
E. R.
Davidson
, and
J. P.
Reilly
, “
Zero kinetic-energy photoelectron-spectra of jet-cooled aniline
,”
J. Chem. Phys.
99
(
5
),
3224
3233
(
1993
).
88.
F.
Mazzoni
,
M.
Pasquini
,
G.
Pietraperzia
, and
M.
Becucci
, “
Binding energy determination in a π-stacked aromatic cluster: The anisole dimer
,”
Phys. Chem. Chem. Phys.
15
(
27
),
11268
11274
(
2013
).

Supplementary Material

You do not currently have access to this content.