The fundamental vibrational frequencies and higher vibrationally excited states for the N3+ ion in its electronic ground state have been determined from quantum bound state calculations on three-dimensional potential energy surfaces (PESs) computed at the coupled-cluster singles and doubles with perturbative triples [CCSD(T)]-F12b/aug-cc-pVTZ-f12 and multireference configuration interaction singles and doubles with quadruples (MRCISD+Q)/aug-cc-pVTZ levels of theory. The vibrational fundamental frequencies are 1130 cm−1 (ν1, symmetric stretch), 807 cm−1 (ν3, asymmetric stretch), and 406 cm−1 (ν2, bend) on the higher-quality CCSD(T)-F12b surface. Bound state calculations based on even higher level PESs [CCSD(T)-F12b/aug-cc-pVQZ-f12 and MRCISD+Q-F12b/aug-cc-pVTZ-f12] confirm the symmetric stretch fundamental frequency as ∼1130 cm−1. This compares with an estimated frequency from experiment at 1170 cm−1 and previous calculations [Chambaud et al., Chem. Phys. Lett. 231, 9–12 (1994)] at 1190 cm−1. The remaining disagreement with the experimental frequency is attributed to uncertainties associated with the widths and positions of the experimental photoelectron peaks. Analysis of the reference complete active space self-consistent field wave function for the MRCISD+Q calculations provides deeper insight into the shape of the PES and lends support for the reliability of the Hartree–Fock reference wave function for the coupled cluster calculations. According to this, N3+ has a mainly single reference character in all low-energy regions of its electronic ground state (3A″) PES.

1.
G.
de Petris
,
A.
Cartoni
,
G.
Angelini
,
O.
Ursini
,
A.
Bottoni
, and
M.
Calvaresi
, “
The N3+ reactivity in ionized gases containing sulfur, nitrogen, and carbon oxides
,”
ChemPhysChem
7
,
2105
2114
(
2006
).
2.
V.
Anicich
,
D.
Milligan
,
D.
Fairley
, and
M.
McEwan
, “
Termolecular ion-molecule reactions in Titan’s atmosphere I—Principal ions with principal neutrals
,”
Icarus
146
,
118
124
(
2000
).
3.
F. R.
Bennett
,
J. P.
Maier
,
G.
Chambaud
, and
P.
Rosmus
, “
Photodissociation, charge and atom transfer processes in electronically excited states of N3+.
,”
Chem. Phys.
209
,
275
280
(
1996
).
4.
A. J.
Midey
,
T. M.
Miller
, and
A. A.
Viggiano
, “
Reactions of N+, N2+, and N3+ with NO from 300 to 1400 K
,”
J. Chem. Phys.
121
,
6822
6829
(
2004
).
5.
A.
Friedmann
,
A. M.
Soliva
,
S. A.
Nizkorodov
,
E. J.
Bieske
, and
J. P.
Maier
, “
A3ΠuX3Σg electronic spectrum of N3+.
,”
J. Phys. Chem.
98
,
8896
8902
(
1994
).
6.
J. M.
Dyke
,
N. B. H.
Jonathan
,
A. E.
Lewis
, and
A.
Morris
, “
Vacuum ultraviolet photoelectron spectroscopy of transient species
,”
Mol. Phys.
47
,
1231
1240
(
1982
).
7.
S. R.
Langhoff
and
E. R.
Davidson
, “
Configuration interaction calculations on nitrogen molecule
,”
Int. J. Quantum Chem.
8
,
61
72
(
1974
).
8.
T. W.
Archibald
and
J. R.
Sabin
, “
Theoretical investigation of the electronic structure and properties of N3, N3, and N3+.
,”
J. Chem. Phys.
55
,
1821
1829
(
1971
).
9.
Z.-L.
Cai
,
Y.-F.
Wang
, and
H.-M.
Xiao
, “
Ab initio study of low-lying electronic states of the N3+ ion
,”
Chem. Phys.
164
,
377
381
(
1992
).
10.
R.
Tian
,
J. C.
Facelli
, and
J.
Michl
, “
Vibrational and electronic spectra of matrix-isolated N3 and N3.
,”
J. Phys. Chem.
92
,
4073
4079
(
1988
).
11.
G.
Chambaud
,
P.
Rosmus
,
F.
Bennett
,
J. P.
Maier
, and
A.
Spielfiedel
, “
Vibrational motion in the X3Σg-state of N3+.
,”
Chem. Phys. Lett.
231
,
9
12
(
1994
).
12.
F.
Jolibois
,
L.
Maron
, and
A.
Ramírez-Solís
, “
Ab initio molecular dynamics studies on the lowest triplet and singlet potential surfaces of the azide cation: Anharmonic effects on the vibrational spectra of linear and cyclic N3+.
,”
J. Mol. Struct.: THEOCHEM
899
,
9
17
(
2009
).
13.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
14.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
 et al, MOLPRO, version 2019.1, A package of ab initio programs,
2019
.
15.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
,
054104
(
2009
).
16.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
17.
H. J.
Werner
and
P. J.
Knowles
, “
An efficient internally contracted multiconfigurationreference configuration interaction method
,”
J. Chem. Phys.
89
,
5803
5814
(
1988
).
18.
P. J.
Knowles
and
H.-J.
Werner
, “
An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
,”
Chem. Phys. Lett.
145
,
514
522
(
1988
).
19.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
20.
H. J.
Werner
and
P. J.
Knowles
, “
A second order multiconfiguration SCF procedure with optimum convergence
,”
J. Chem. Phys.
82
,
5053
5063
(
1985
).
21.
P. J.
Knowles
and
H.-J.
Werner
, “
An efficient second-order MC SCF method for long configuration expansions
,”
Chem. Phys. Lett.
115
,
259
267
(
1985
).
22.
H. J.
Werner
and
W.
Meyer
, “
A quadratically convergent multiconfiguration–self-consistent field method with simultaneous optimization of orbitals and CI coefficients
,”
J. Chem. Phys.
73
,
2342
2356
(
1980
).
23.
D. A.
Kreplin
,
P. J.
Knowles
, and
H.-J.
Werner
, “
Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence
,”
J. Chem. Phys.
150
,
194106
(
2019
).
24.
T. S.
Ho
and
H.
Rabitz
, “
A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations
,”
J. Chem. Phys.
104
,
2584
2597
(
1996
).
25.
O. T.
Unke
and
M.
Meuwly
, “
Toolkit for the construction of Reproducing Kernel-Based representations of data: Application to multidimensional potential energy surfaces
,”
J. Chem. Inf. Model.
57
,
1923
1931
(
2017
).
26.
J.
Tennyson
,
M. A.
Kostin
,
P.
Barletta
,
G. J.
Harris
,
O. L.
Polyansky
,
J.
Ramanlal
, and
N. F.
Zobov
, “
DVR3D: A program suite for the calculation of rotation–vibration spectra of triatomic molecules
,”
Comput. Phys. Commun.
163
,
85
116
(
2004
).
27.
J.
Dai
and
J. Z. H.
Zhang
, “
Time-dependent spectral calculation of bound and resonance energies of HO2
,”
J. Chem. Phys.
104
,
3664
3671
(
1996
).
28.
D.
Koner
,
L.
Barrios
,
T.
González-Lezana
, and
A. N.
Panda
, “
Scattering study of the Ne + NeH+ (v0 = 0, j0 = 0) → NeH+ + Ne reaction on an ab initio based analytical potential energy surface
,”
J. Chem. Phys.
144
,
034303
(
2016
).
29.
D.
Koner
,
Scattering Studies of Proton Transfer Reactions between Rare Gas Atoms
(
Indian Institute of Technology Guwahati
,
2016
).
30.
M. D.
Feit
,
J. A.
Fleck
, and
A.
Steiger
, “
Solution of the Schödinger equation by a spectral method
,”
J. Comput. Phys.
47
,
412
433
(
1982
).
31.
J.
Dai
and
J. Z. H.
Zhang
, “
Noise-free spectrum for time-dependent calculation of eigenenergies
,”
J. Chem. Phys.
103
,
1491
1497
(
1995
).
32.
S.
Mahapatra
and
N.
Sathyamurthy
, “
Correlation function approach to transition state resonances in collinear (He, H2+) collisions
,”
J. Chem. Phys.
102
,
6057
6066
(
1995
).
33.
Iboview orbital visualization program,
G.
Knizia
, https://www.iboview.org; accessed 09 April 2020.
34.
T.
Trickl
,
E. F.
Cromwell
,
Y. T.
Lee
, and
A. H.
Kung
, “
State-selective ionization of nitrogen in the X2Σg+(v+=0) and (v+ = 1) states by two-color (1+1) photon excitation near threshold
,”
J. Chem. Phys.
91
,
6006
6012
(
1989
).
35.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 88th ed. (
CRC Press
,
2007
).
36.
T. J.
Lee
and
P. R.
Taylor
, “
A diagnostic for determining the quality of single-reference electron correlation methods
,”
Int. J. Quantum Chem.
36
,
199
207
(
1989
).
37.
C. L.
Janssen
and
I. M. B.
Nielsen
, “
New diagnostics for coupled-cluster and Møller–Plesset perturbation theory
,”
Chem. Phys. Lett.
290
,
423
430
(
1998
).
38.
O.
Tishchenko
,
J.
Zheng
, and
D. G.
Truhlar
, “
Multireference model chemistries for thermochemical kinetics
,”
J. Chem. Theory Comput.
4
,
1208
1219
(
2008
).
39.
Y. A.
Aoto
,
A. P.
de Lima Batista
,
A.
Köhn
, and
A. G. S.
de Oliveira-Filho
, “
How to arrive at accurate benchmark values for transition metal compounds: Computation or experiment?
,”
J. Chem. Theory Comput.
13
,
5291
5316
(
2017
).
40.
S. H.
Yuwono
,
I.
Magoulas
, and
P.
Piecuch
, “
Quantum computation solves a half-century-old enigma: Elusive vibrational states of magnesium dimer found
,”
Sci. Adv.
6
,
eaay4058
(
2020
).
41.
T.
Shiozaki
,
G.
Knizia
, and
H. J.
Werner
, “
Multireference explicitly correlated F12 theories
,”
Mol. Phys.
111
,
607
630
(
2013
).
42.
T.
Shiozaki
,
G.
Knizia
, and
H.-J.
Werner
, “
Explicitly correlated multireference configuration interaction: MRCI-F12
,”
J. Chem. Phys.
134
,
034113
(
2011
).
43.
S. M.
Salehi
,
D.
Koner
, and
M.
Meuwly
, “
Vibrational Spectroscopy of N3 in the gas and condensed phase
,”
J. Phys. Chem. B
123
,
3282
3290
(
2019
).
44.
B. R.
Brooks
etet al, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
45.
D.
Brooks
,
R. J.
Bemish
, and
M.
Meuwly
, “
The C(3P) + NO(X2Π) → O(3P) + CN(X2Σ+), N(2D)/N(4S) + CO(X1Σ+) reaction: Rates, branching ratios, and final states from 15 K to 20 000 K
,”
J. Chem. Phys.
149
,
094305
(
2018
).
46.
J. C.
San Vicente Veliz
,
D.
Koner
,
M.
Schwilk
,
R. J.
Bemish
, and
M.
Meuwly
, “
The N(4S) + O2(X3Σg) ↔ O(3P) + NO(X 2Π) reaction: Thermal and vibrational relaxation rates for the 2A′, 4A′ and 2A″ states
,”
Phys. Chem. Chem. Phys.
22
,
3927
3939
(
2020
).

Supplementary Material

You do not currently have access to this content.