We explore the use of the stochastic resolution-of-the-identity (sRI) with the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) method. sRI is combined with four existing local energy evaluation strategies in ph-AFQMC, namely, (1) the half-rotated electron repulsion integral tensor (HR), (2) Cholesky decomposition (CD), (3) tensor hypercontraction (THC), or (4) low-rank factorization (LR). We demonstrate that HR–sRI achieves no scaling reduction, CD–sRI scales as O(N3), and THC–sRI and LR–sRI scale as O(N2), albeit with a potentially large prefactor. Furthermore, the walker-specific extra memory requirement in CD is reduced from O(N3) to O(N2) with sRI, while sRI-based THC and LR algorithms lead to a reduction from O(N2) extra memory to O(N). Based on numerical results for one-dimensional hydrogen chains and water clusters, we demonstrated that, along with the use of a variance reduction technique, CD–sRI achieves cubic-scaling without overhead. In particular, we find that for the systems studied, the observed scaling of standard CD is O(N34), while for CD–sRI, it is reduced to O(N23). Once a memory bottleneck is reached, we expect THC–sRI and LR–sRI to be preferred methods due to their quadratic-scaling memory requirements and their quadratic-scaling of the local energy evaluation (with a potentially large prefactor). The theoretical framework developed here should facilitate large-scale ph-AFQMC applications that were previously difficult or impossible to carry out with standard computational resources.

1.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
,
13
(
1996
).
2.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
3.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
4.
Q.
Sun
and
G. K.-L.
Chan
, “
Quantum embedding theories
,”
Acc. Chem. Res.
49
,
2705
2712
(
2016
).
5.
J. A.
Barker
, “
A quantum-statistical Monte Carlo method; path integrals with boundary conditions
,”
J. Chem. Phys.
70
,
2914
2918
(
1979
).
6.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
, “
A diffusion Monte Carlo algorithm with very small time-step errors
,”
J. Chem. Phys.
99
,
2865
2890
(
1993
).
7.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
(
1995
).
8.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path quantum Monte Carlo method for fermion ground states
,”
Phys. Rev. Lett.
74
,
3652
(
1995
).
9.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path Monte Carlo method for fermion ground states
,”
Phys. Rev. B
55
,
7464
(
1997
).
10.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo method using phase-free random walks with Slater determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
11.
H.
Shi
and
S.
Zhang
, “
Symmetry in auxiliary-field quantum Monte Carlo calculations
,”
Phys. Rev. B
88
,
125132
(
2013
).
12.
E. J. L.
Borda
,
J.
Gomez
, and
M. A.
Morales
, “
Non-orthogonal multi-Slater determinant expansions in auxiliary field quantum Monte Carlo
,”
J. Chem. Phys.
150
,
074105
(
2019
).
13.
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
, “
Auxiliary-field quantum Monte Carlo study of TiO and MnO molecules
,”
Phys. Rev. B
73
,
075103
(
2006
).
14.
W. A.
Al-Saidi
,
S.
Zhang
, and
H.
Krakauer
, “
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
,”
J. Chem. Phys.
124
,
224101
(
2006
).
15.
M.
Suewattana
,
W.
Purwanto
,
S.
Zhang
,
H.
Krakauer
, and
E. J.
Walter
, “
Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials: Applications to atoms and molecules
,”
Phys. Rev. B
75
,
245123
(
2007
).
16.
W.
Purwanto
,
W. A.
Al-Saidi
,
H.
Krakauer
, and
S.
Zhang
, “
Eliminating spin contamination in auxiliary-field quantum Monte Carlo: Realistic potential energy curve of F2
,”
J. Chem. Phys.
128
,
114309
(
2008
).
17.
W.
Purwanto
,
S.
Zhang
, and
H.
Krakauer
, “
An auxiliary-field quantum Monte Carlo study of the chromium dimer
,”
J. Chem. Phys.
142
,
064302
(
2015
).
18.
H.
Hao
,
J.
Shee
,
S.
Upadhyay
,
C.
Ataca
,
K. D.
Jordan
, and
B. M.
Rubenstein
, “
Accurate predictions of electron binding energies of dipole-bound anions via quantum Monte Carlo methods
,”
J. Phys. Chem. Lett.
9
,
6185
6190
(
2018
).
19.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
15
,
4924
4932
(
2019
).
20.
J.
Shee
,
B.
Rudshteyn
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
On achieving high accuracy in quantum chemical calculations of 3d transition metal-containing systems: A comparison of auxiliary-field quantum Monte Carlo with coupled cluster, density functional theory, and experiment for diatomic molecules
,”
J. Chem. Theory Comput.
15
,
2346
2358
(
2019
).
21.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
, “
An auxiliary-field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree–Fock trial wavefunctions
,”
J. Chem. Phys.
151
,
064122
(
2019
).
22.
M.
Motta
,
S.
Zhang
, and
G. K.-L.
Chan
, “
Hamiltonian symmetries in auxiliary-field quantum Monte Carlo calculations for electronic structure
,”
Phys. Rev. B
100
,
045127
(
2019
).
23.
M.
Motta
and
S.
Zhang
, “
Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo
,”
J. Chem. Phys.
148
,
181101
(
2018
).
24.
M.
Motta
and
S.
Zhang
, “
Computation of ground-state properties in molecular systems: Back-propagation with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
13
,
5367
(
2017
).
25.
S.
Zhang
,
F. D.
Malone
, and
M. A.
Morales
, “
Auxiliary-field quantum Monte Carlo calculations of the structural properties of nickel oxide
,”
J. Chem. Phys.
149
,
164102
(
2018
).
26.
F. D.
Malone
,
S.
Zhang
, and
M. A.
Morales
, “
Overcoming the memory bottleneck in auxiliary field quantum Monte Carlo simulations with interpolative separable density fitting
,”
J. Chem. Theory Comput.
15
,
256
(
2019
).
27.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
, “
Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C36 fullerene and an iron porphyrin model complex
,”
J. Chem. Theory Comput.
16
,
3019
3027
(
2020
).
28.
E. G.
Hohenstein
,
R. M.
Parrish
, and
T. J.
Martínez
, “
Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller–Plesset perturbation theory
,”
J. Chem. Phys.
137
,
044103
(
2012
).
29.
R. M.
Parrish
,
E. G.
Hohenstein
,
T. J.
Martínez
, and
C. D.
Sherrill
, “
Tensor hypercontraction. II. Least-squares renormalization
,”
J. Chem. Phys.
137
,
224106
(
2012
).
30.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
, and
T. J.
Martínez
, “
Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions
,”
J. Chem. Phys.
137
,
221101
(
2012
).
31.
J.
Lee
,
L.
Lin
, and
M.
Head-Gordon
, “
Systematically improvable tensor hypercontraction: Interpolative separable density-fitting for molecules applied to exact exchange, second- and third-order Møller–Plesset perturbation theory
,”
J. Chem. Theory Comput.
16
,
243
263
(
2019
).
32.
M.
Motta
,
J.
Shee
,
S.
Zhang
, and
G. K.-L.
Chan
, “
Efficient ab initio auxiliary-field quantum Monte Carlo calculations in Gaussian bases via low-rank tensor decomposition
,”
J. Chem. Theory Comput.
15
,
3510
3521
(
2019
).
33.
B.
Peng
and
K.
Kowalski
, “
Highly efficient and scalable compound decomposition of two-electron integral tensor and its application in coupled cluster calculations
,”
J. Chem. Theory Comput.
13
,
4179
4192
(
2017
).
34.
R.
Baer
and
D.
Neuhauser
, “
Communication: Monte Carlo calculation of the exchange energy
,”
J. Chem. Phys.
137
,
051103
(
2012
).
35.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Self-averaging stochastic Kohn–Sham density-functional theory
,”
Phys. Rev. Lett.
111
,
106402
(
2013
).
36.
D.
Neuhauser
,
E.
Rabani
,
Y.
Cytter
, and
R.
Baer
, “
Stochastic optimally tuned range-separated hybrid density functional theory
,”
J. Phys. Chem. A
120
,
3071
3078
(
2016
).
37.
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Communication: Embedded fragment stochastic density functional theory
,”
J. Chem. Phys.
141
,
041102
(
2014
).
38.
Y.
Gao
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Sublinear scaling for time-dependent stochastic density functional theory
,”
J. Chem. Phys.
142
,
034106
(
2015
).
39.
D.
Neuhauser
,
E.
Rabani
, and
R.
Baer
, “
Expeditious stochastic approach for MP2 energies in large electronic systems
,”
J. Chem. Theory Comput.
9
,
24
27
(
2013
).
40.
Q.
Ge
,
Y.
Gao
,
R.
Baer
,
E.
Rabani
, and
D.
Neuhauser
, “
A guided stochastic energy-domain formulation of the second order Møller–Plesset perturbation theory
,”
J. Phys. Chem. Lett.
5
,
185
189
(
2014
).
41.
T. Y.
Takeshita
,
W. A.
de Jong
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Stochastic formulation of the resolution of identity: Application to second order Møller–Plesset perturbation theory
,”
J. Chem. Theory Comput.
13
,
4605
4610
(
2017
).
42.
D.
Neuhauser
,
R.
Baer
, and
D.
Zgid
, “
Stochastic self-consistent second-order Green’s function method for correlation energies of large electronic systems
,”
J. Chem. Theory Comput.
13
,
5396
5403
(
2017
).
43.
T. Y.
Takeshita
,
W.
Dou
,
D. G. A.
Smith
,
W. A.
de Jong
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Stochastic resolution of identity second-order Matsubara Green’s function theory
,”
J. Chem. Phys.
151
,
044114
(
2019
).
44.
W.
Dou
,
T. Y.
Takeshita
,
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Stochastic resolution of identity for real-time second-order Green’s function: Ionization potential and quasi-particle spectrum
,”
J. Chem. Theory Comput.
15
,
6703
6711
(
2019
).
45.
D.
Neuhauser
,
E.
Rabani
, and
R.
Baer
, “
Expeditious stochastic calculation of random-phase approximation energies for thousands of electrons in three dimensions
,”
J. Phys. Chem. Lett.
4
,
1172
1176
(
2013
).
46.
E.
Rabani
,
R.
Baer
, and
D.
Neuhauser
, “
Time-dependent stochastic Bethe–Salpeter approach
,”
Phys. Rev. B
91
,
235302
(
2015
).
47.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
48.
D. J.
Thouless
, “
Stability conditions and nuclear rotations in the Hartree–Fock theory
,”
Nucl. Phys.
21
,
225
232
(
1960
).
49.
D. J.
Thouless
, “
Vibrational states of nuclei in the random phase approximation
,”
Nucl. Phys.
22
,
78
95
(
1961
).
50.
N.
Rom
,
D. M.
Charutz
, and
D.
Neuhauser
, “
Shifted-contour auxiliary-field Monte Carlo: Circumventing the sign difficulty for electronic-structure calculations
,”
Chem. Phys. Lett.
270
,
382
386
(
1997
).
51.
G.
Spink
,
R.
Needs
, and
N.
Drummond
, “
Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas
,”
Phys. Rev. B
88
,
085121
(
2013
).
52.
C.
Lemieux
, “
Control variates
,” in , edited by
N.
Balakrishnan
,
T.
Colton
,
B.
Everitt
,
W.
Piegorsch
,
F.
Ruggeri
, and
J. L.
Teugels
(
Wiley
,
2017
).
53.
See https://github.com/pauxy-qmc/pauxy for details on how to obtain the source code.
54.
L. K.
Wagner
,
M.
Bajdich
, and
L.
Mitas
, “
QWalk: A quantum Monte Carlo program for electronic structure
,”
J. Comput. Phys.
228
,
3390
(
2009
).
55.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
56.
J.
Kim
 et al., “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
).
57.
P. R. C.
Kent
et al., “
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo
,”
J. Chem. Phys.
152
,
174105
(
2020
).
58.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
59.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Phaseless auxiliary-field quantum Monte Carlo on graphical processing units
,”
J. Chem. Theory Comput.
14
,
4109
4121
(
2018
).
60.
F. D.
Malone
,
S.
Zhang
, and
M. A.
Morales
, “
Accelerating auxiliary-field quantum Monte Carlo simulations of solids with graphical processing unit
,”
J. Chem. Theory Comput.
16
(
7
),
4286
4297
(
2020
).
You do not currently have access to this content.