The emergence of machine learning methods in quantum chemistry provides new methods to revisit an old problem: Can the predictive accuracy of electronic structure calculations be decoupled from their numerical bottlenecks? Previous attempts to answer this question have, among other methods, given rise to semi-empirical quantum chemistry in minimal basis representation. We present an adaptation of the recently proposed SchNet for Orbitals (SchNOrb) deep convolutional neural network model [K. T. Schütt et al., Nat. Commun. 10, 5024 (2019)] for electronic wave functions in an optimized quasi-atomic minimal basis representation. For five organic molecules ranging from 5 to 13 heavy atoms, the model accurately predicts molecular orbital energies and wave functions and provides access to derived properties for chemical bonding analysis. Particularly for larger molecules, the model outperforms the original atomic-orbital-based SchNOrb method in terms of accuracy and scaling. We conclude by discussing the future potential of this approach in quantum chemical workflows.

1.
G.
Carleo
,
I.
Cirac
,
K.
Cranmer
,
L.
Daudet
,
M.
Schuld
,
N.
Tishby
,
L.
Vogt-Maranto
, and
L.
Zdeborová
, “
Machine learning and the physical sciences
,”
Rev. Mod. Phys.
91
,
045002
(
2019
).
2.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
555
(
2018
).
3.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
4.
P. O.
Dral
, “
Quantum chemistry in the age of machine learning
,”
J. Phys. Chem. Lett.
11
,
2336
2347
(
2020
).
5.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
6.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
7.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
8.
J.
Behler
,
S.
Lorenz
, and
K.
Reuter
, “
Representing molecule-surface interactions with symmetry-adapted neural networks
,”
J. Chem. Phys.
127
,
014705
(
2007
).
9.
B.
Kolb
,
X.
Luo
,
X.
Zhou
,
B.
Jiang
, and
H.
Guo
, “
High-dimensional atomistic neural network potentials for molecule–surface interactions: HCl scattering from Au(111)
,”
J. Phys. Chem. Lett.
8
,
666
672
(
2017
).
10.
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
, “
Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
,”
J. Phys. Chem. Lett.
10
,
4962
4967
(
2019
).
11.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
, “
Symmetry-adapted machine learning for tensorial properties of atomistic systems
,”
Phys. Rev. Lett.
120
,
036002
(
2018
).
12.
A. S.
Christensen
,
F. A.
Faber
, and
O. A.
Von Lilienfeld
, “
Operators in quantum machine learning: Response properties in chemical space
,”
J. Chem. Phys.
150
,
064105
(
2019
).
13.
K.
Saravanan
,
J. R.
Kitchin
,
O. A.
Von Lilienfeld
, and
J. A.
Keith
, “
Alchemical predictions for computational catalysis: Potential and limitations
,”
J. Phys. Chem. Lett.
8
,
5002
5007
(
2017
).
14.
J. R.
Kitchin
, “
Machine learning in catalysis
,”
Nat. Catal.
1
,
230
232
(
2018
).
15.
A. A.
Peterson
, “
Acceleration of saddle-point searches with machine learning
,”
J. Chem. Phys.
145
,
074106
(
2016
).
16.
G. B.
Goh
,
N. O.
Hodas
, and
A.
Vishnu
, “
Deep learning for computational chemistry
,”
J. Comput. Chem.
38
,
1291
1307
(
2017
).
17.
M.
Sugawara
, “
Numerical solution of the Schrödinger equation by neural network and genetic algorithm
,”
Comput. Phys. Commun.
140
,
366
380
(
2001
).
18.
S.
Manzhos
and
T.
Carrington
, “
An improved neural network method for solving the Schrödinger equation
,”
Can. J. Chem.
87
,
864
871
(
2009
).
19.
J.
Hermann
,
Z.
Schätzle
, and
F.
Noé
, “
Deep neural network solution of the electronic Schrödinger equation
,” arXiv:1909.08423 (
2019
).
20.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K. R.
Müller
, “
Bypassing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
21.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
, “
AM1: A new general purpose quantum mechanical molecular Model1
,”
J. Am. Chem. Soc.
107
,
3902
3909
(
1985
).
22.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
7268
(
1998
).
23.
P.
Koskinen
and
V.
Mäkinen
, “
Density-functional tight-binding for beginners
,”
Comput. Mater. Sci.
47
,
237
253
(
2009
).
24.
P. O.
Dral
,
O. A.
Von Lilienfeld
, and
W.
Thiel
, “
Machine learning of parameters for accurate semiempirical quantum chemical calculations
,”
J. Chem. Theory Comput.
11
,
2120
2125
(
2015
).
25.
H.
Li
,
C.
Collins
,
M.
Tanha
,
G. J.
Gordon
, and
D. J.
Yaron
, “
A density functional tight binding layer for deep learning of chemical Hamiltonians
,”
J. Chem. Theory Comput.
14
,
5764
5776
(
2018
).
26.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
, “
Transferability in machine learning for electronic structure via the molecular orbital basis
,”
J. Chem. Theory Comput.
14
,
4772
4779
(
2018
).
27.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
, “
A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
,”
J. Chem. Phys.
150
,
131103
(
2019
).
28.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
29.
W. C.
Lu
,
C. Z.
Wang
,
M. W.
Schmidt
,
L.
Bytautas
,
K. M.
Ho
, and
K.
Ruedenberg
, “
Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals
,”
J. Chem. Phys.
120
,
2629
2637
(
2004
).
30.
W. C.
Lu
,
C. Z.
Wang
,
K.
Ruedenberg
, and
K. M.
Ho
, “
Transferability of the Slater-Koster tight-binding scheme from an environment-dependent minimal-basis perspective
,”
Phys. Rev. B
72
,
205123
(
2005
).
31.
K. T.
Schütt
,
P. J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K. R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
Advances in Neural Information Processing Systems
(
Neural Information Processing Systems Foundation
,
2017
), Vol. 2017, pp.
992
1002
.
32.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
33.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
34.
L. A.
Agapito
,
S.
Ismail-Beigi
,
S.
Curtarolo
,
M.
Fornari
, and
M. B.
Nardelli
, “
Accurate tight-binding Hamiltonian matrices from ab initio calculations: Minimal basis sets
,”
Phys. Rev. B
93
,
035104
(
2016
).
35.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
36.
H.
Eschrig
and
I.
Bergert
, “
An optimized LCAO version for band structure calculations application to copper
,”
Phys. Status Solidi B
90
,
621
628
(
1978
).
37.
J.
Smutna
,
R. M.
Fogarty
,
M. R.
Wenman
, and
A. P.
Horsfield
, “
Systematic development of ab initio tight-binding models for hexagonal metals
,”
Phys. Rev. Mater.
4
,
043801
(
2020
).
38.
W. C.
Lu
,
C. Z.
Wang
,
M. W.
Schmidt
,
L.
Bytautas
,
K. M.
Ho
, and
K.
Ruedenberg
, “
Molecule intrinsic minimal basis sets. II. Bonding analyses for Si4H6 and Si2 to Si10
,”
J. Chem. Phys.
120
,
2638
2651
(
2004
).
39.

Note that the occupied space can also contain nominally unoccupied orbitals as long as N < M.

40.
F.
Neese
, “
The ORCA program system
,”
WIREs: Comput. Mol. Sci.
2
,
73
78
(
2012
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
42.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
43.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
44.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
455
(
2018
).
45.
D. P.
Kingma
and
J.
Ba
, “
ADAM: A method for stochastic optimization
,” in
International Conference for Learning Representations
,
2014
.
46.
N.
Thomas
,
T.
Smidt
,
S.
Kearnes
,
L.
Yang
,
L.
Li
,
K.
Kohlhoff
, and
P.
Riley
, “
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
,” arXiv:1802.08219 (
2018
).
47.
G.
Hegde
and
R. C.
Bowen
, “
Machine-learned approximations to density functional theory Hamiltonians
,”
Sci. Rep.
7
,
42669
(
2017
).

Supplementary Material

You do not currently have access to this content.