The Massively Parallel Quantum Chemistry (MPQC) program is a 30-year-old project that enables facile development of electronic structure methods for molecules for efficient deployment to massively parallel computing architectures. Here, we describe the historical evolution of MPQC’s design into its latest (fourth) version, the capabilities and modular architecture of today’s MPQC, and how MPQC facilitates rapid composition of new methods as well as its state-of-the-art performance on a variety of commodity and high-end distributed-memory computer platforms.

1.
M. E.
Colvin
,
R. A.
Whiteside
, and
H. F.
Schaefer
 III
, “
Quantum chemical methods for massively parallel computers
,” in
Methods in Computational Chemistry: Volume 3: Concurrent Computation in Chemical Calculations
, edited by
S.
Wilson
(
Springer US
,
Boston, MA
,
1989
), pp.
167
237
.
2.
See http://www.literateprogramming.com/cweb_download.html for details on CWEB, a Literate Programming language.
3.
See http://github.com/ValeevGroup/mpqc for the MPQC source code repository.
4.
M. E.
Colvin
,
C. L.
Janssen
,
R. A.
Whiteside
, and
C. H.
Tong
, “
Parallel direct SCF for large-scale calculations
,”
Theor. Chim. Acta
84
,
301
314
(
1993
).
5.
I. M. B.
Nielsen
and
E. T.
Seidl
, “
Parallel direct implementations of second-order perturbation theories
,”
J. Comput. Chem.
16
,
1301
1313
(
1995
).
6.
I. M. B.
Nielsen
, “
A new direct MP2 gradient algorithm with implementation on a massively parallel computer
,”
Chem. Phys. Lett.
255
,
210
216
(
1996
).
7.
J.
Nieplocha
,
R. J.
Harrison
, and
R. J.
Littlefield
, “
Global arrays: A portable “shared-memory” programming model for distributed memory computers
,” in
Proceedings of the 1994 ACM/IEEE Conference on Supercomputing’ 94
(
ACM
,
1994
), pp.
340
349
.
8.
J.
Nieplocha
,
V.
Tipparaju
,
M.
Krishnan
, and
D. K.
Panda
, “
High performance remote memory access communication: The armci approach
,”
Int. J. High Perform. Comput. Appl.
20
,
233
253
(
2006
).
9.
See http://www.doxygen.nl/ for details on Doxygen, a tool for generating documentation from annotated source files.
10.
M. J.
Frisch
,
G. W.
Trucks
,
M.
Head-Gordon
,
P. M. W.
Gill
,
M. W.
Wong
,
J. B.
Foresman
,
B. G.
Johnson
,
H. B.
Schlegel
,
M. A.
Robb
,
E. S.
Replogle
,
R.
Gomperts
,
J. L.
Andres
,
K.
Raghavachari
,
J. S.
Binkley
,
C.
Gonzalez
,
R. L.
Martin
,
D. J.
Fox
,
D. J.
Defrees
,
J.
Baker
,
J. J. P.
Stewart
, and
J. A.
Pople
, Gaussian 92,
Gaussian, Inc.
,
Pittsburgh, PA
,
1992
.
11.
J. T.
Fermann
, “
Efficient implementation of vertical recursion relations for the generation of electron repulsion integrals
,” Ph.D. thesis,
University of Georgia
,
1996
.
12.
E. F.
Valeev
, “
A library for the evaluation of molecular integrals of many-body operators over Gaussian functions
,” http://libint.valeyev.net/,
2014
.
13.
I. M. B.
Nielsen
and
C. L.
Janssen
, “
Multi-threading: A new dimension to massively parallel scientific computation
,”
Comput. Phys. Commun.
128
,
238
244
(
2001
).
14.
E. F.
Valeev
, “
Improving on the resolution of the identity in linear R12 ab initio theories
,”
Chem. Phys. Lett.
395
,
190
195
(
2004
).
15.
A. J.
May
,
E.
Valeev
,
R.
Polly
, and
F. R.
Manby
, “
Analysis of the errors in explicitly correlated electronic structure theory
,”
Phys. Chem. Chem. Phys.
7
,
2710
2713
(
2005
).
16.
E. F.
Valeev
and
C. L.
Janssen
, “
Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: Auxiliary basis set method and massively parallel implementation
,”
J. Chem. Phys.
121
,
1214
1227
(
2004
).
17.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
18.
C. L.
Janssen
,
J. P.
Kenny
,
I. M. B.
Nielsen
,
M.
Krishnan
,
V.
Gurumoorthi
,
E. F.
Valeev
, and
T. L.
Windus
, “
Enabling new capabilities and insights from quantum chemistry by using component architectures
,”
J. Phys.: Conf. Ser.
46
,
220
(
2006
).
19.
J. P.
Kenny
,
C. L.
Janssen
,
E. F.
Valeev
, and
T. L.
Windus
, “
Components for integral evaluation in quantum chemistry
,”
J. Comput. Chem.
29
,
562
577
(
2008
).
20.
J.
Zhang
,
J. A.
Calvin
, and
E. F.
Valeev
, “
Anatomy of molecular properties evaluated with explicitly correlated electronic wave functions
,”
Mol. Phys.
114
,
2894
2909
(
2016
).
21.
E. F.
Valeev
, “
Combining explicitly correlated R12 and Gaussian geminal electronic structure theories
,”
J. Chem. Phys.
125
,
244106
(
2006
).
22.
E. F.
Valeev
, “
Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: A preliminary investigation
,”
Phys. Chem. Chem. Phys.
10
,
106
113
(
2008
).
23.
E. F.
Valeev
and
T. D.
Crawford
, “
Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model
,”
J. Chem. Phys.
128
,
244113
(
2008
).
24.
M.
Torheyden
and
E. F.
Valeev
, “
Variational formulation of perturbative explicitly-correlated coupled-cluster methods
,”
Phys. Chem. Chem. Phys.
10
,
3410
3420
(
2008
).
25.
J.
Zhang
and
E. F.
Valeev
, “
Prediction of reaction barriers and thermochemical properties with explicitly correlated coupled-cluster methods: A basis set assessment
,”
J. Chem. Theory Comput.
8
,
3175
3186
(
2012
).
26.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
, “
PSI3: An open-source ab initio electronic structure package
,”
J. Comput. Chem.
28
,
1610
1616
(
2007
).
27.
I. M. B.
Nielsen
and
C. L.
Janssen
, “
Local Møller–Plesset perturbation theory: A massively parallel algorithm
,”
J. Chem. Theory Comput.
3
,
71
79
(
2007
).
28.
M.
Torheyden
and
E. F.
Valeev
, “
Universal perturbative explicitly correlated basis set incompleteness correction
,”
J. Chem. Phys.
131
,
171103
(
2009
).
29.
L.
Kong
and
E. F.
Valeev
, “
Perturbative correction for the basis set incompleteness error of complete-active-space self-consistent field
,”
J. Chem. Phys.
133
,
174126
(
2010
).
30.
L.
Kong
and
E. F.
Valeev
, “
SF-[2]R12: A spin-adapted explicitly correlated method applicable to arbitrary electronic states
,”
J. Chem. Phys.
135
,
214105
(
2011
).
31.
L. B.
Roskop
,
L.
Kong
,
E. F.
Valeev
,
M. S.
Gordon
, and
T. L.
Windus
, “
Assessment of perturbative explicitly correlated methods for prototypes of multiconfiguration electronic structure
,”
J. Chem. Theory Comput.
10
,
90
101
(
2014
).
32.
L. B.
Roskop
,
E. F.
Valeev
,
E. A.
Carter
,
M. S.
Gordon
, and
T. L.
Windus
, “
Spin-free [2]R12 basis set incompleteness correction to the local multireference configuration interaction and the local multireference average coupled pair functional methods
,”
J. Chem. Theory Comput.
12
,
3176
3184
(
2016
).
33.
E. F.
Valeev
,
V.
Coropceanu
,
D. A.
da Silva Filho
,
S.
Salman
, and
J.-L.
Brédas
, “
Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors
,”
J. Am. Chem. Soc.
128
,
9882
9886
(
2006
).
34.
D. S.
Hollman
,
H. F.
Schaefer
, and
E. F.
Valeev
, “
Semi-exact concentric atomic density fitting: Reduced cost and increased accuracy compared to standard density fitting
,”
J. Chem. Phys.
140
,
064109
(
2014
).
35.
D. S.
Hollman
,
H. F.
Schaefer
, and
E. F.
Valeev
, “
Fast construction of the exchange operator in an atom-centred basis with concentric atomic density fitting
,”
Mol. Phys.
115
,
2065
2076
(
2017
).
36.
See http://github.com/ValeevGroup/tiledarray for access to TiledArray’s GitHub repository.
37.
R. J.
Harrison
,
G.
Beylkin
,
F. A.
Bischoff
,
J. A.
Calvin
,
G. I.
Fann
,
J.
Fosso-Tande
,
D.
Galindo
,
J. R.
Hammond
,
R.
Hartman-Baker
,
J. C.
Hill
,
J.
Jia
,
J. S.
Kottmann
,
M.-J.
Yvonne Ou
,
J.
Pei
,
L. E.
Ratcliff
,
M. G.
Reuter
,
A. C.
Richie-Halford
,
N. A.
Romero
,
H.
Sekino
,
W. A.
Shelton
,
B. E.
Sundahl
,
W. S.
Thornton
,
E. F.
Valeev
,
Á.
Vázquez-Mayagoitia
,
N.
Vence
,
T.
Yanai
, and
Y.
Yokoi
, “
MADNESS: A multiresolution, adaptive numerical environment for scientific simulation
,”
SIAM J. Sci. Comput.
38
,
S123
S142
(
2016
).
38.
See https://software.intel.com/en-us/tbb for details on the Intel TBB package.
39.
See https://www.openmp.org for information about the OpenMP programming model.
40.
See https://www.boost.org for information about the Boost C++ Libraries.
41.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
 III
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
 III
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI41.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
42.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
43.
T.
Verstraelen
,
P.
Tecmer
,
F.
Heidar-Zadeh
,
C. E.
González-Espinoza
,
M.
Chan
,
T. D.
Kim
,
K.
Boguslawski
,
S.
Fias
,
S.
Vandenbrande
,
D.
Berrocal
, and
P. W.
Ayers
, Horton 2.1.1, http://theochem.github.com/horton/,
2017
.
44.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
, “
ADCC: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(published online, 2020).
45.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
46.
See https://cmake.org for information about the CMake build and test system.
47.
See https://bazel.build for information about the Bazel build and test system.
48.
See https://build2.org for details on build2, a C++ build toolchain.
49.
See https://mesonbuild.com for details on the Meson build system.
50.

Peeking ahead, introduction of modules in C++ in the just-finalized 2020 standard will simplify the reuse even more by removing the need to specify properties of “modules” in the domain-specific language of the build tool; module properties will be specified in the C++ source code directly

51.
See https://github.com/root-project/cling for access to the source code repository of Cling, a C++ interpreter.
52.
See https://www.circle-lang.org/ for details on the Circle programming language.
53.
See https://www.w3.org/TR/xpath/all/ for information about the XML Path Language (XPATH).
54.
See https://tools.ietf.org/html/rfc6901 for the specification of the JSON Pointer standard.
55.
See https://json-schema.org/draft/2019-09/relative-json-pointer.html for a draft specification of relative JSON Pointers.
56.
P.
Murray-Rust
,
H. S.
Rzepa
, and
M.
Wright
, “
Development of chemical markup language (CML) as a system for handling complex chemical content
,”
New J. Chem.
25
,
618
634
(
2001
).
57.
See https://github.com/MolSSI/QCSchema for access to the source repository of the QCSchema project.
58.
See https://github.com/microsoft/Quantum/tree/master/Chemistry/Schema for access to the source repository with Microsoft’s quantum chemistry schema.
59.
R. A.
Van De Geijn
and
J.
Watts
, “
SUMMA: Scalable universal matrix multiplication algorithm
,”
Concurrency: Pract. Exper.
9
,
255
274
(
1997
).
60.
J. A.
Calvin
,
C. A.
Lewis
, and
E. F.
Valeev
, “
Scalable task-based algorithm for multiplication of block-rank-sparse matrices
,” in
Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms, IA 3 ’15
(
ACM Press
,
New York, USA
,
2015
), pp.
1
8
.
61.
C. A.
Lewis
,
J. A.
Calvin
, and
E. F.
Valeev
, “
Clustered low-rank tensor format: Introduction and application to fast construction of Hartree–Fock exchange
,”
J. Chem. Theory Comput.
12
,
5868
5880
(
2016
).
62.
C.
Peng
,
J. A.
Calvin
, and
E. F.
Valeev
, “
Coupled-cluster singles, doubles and perturbative triples with density fitting approximation for massively parallel heterogeneous platforms
,”
Int. J. Quantum Chem.
119
,
e25894
(
2019
).
63.
See http://eigen.tuxfamily.org/ for details on Eigen, a C++ linear algebra library.
64.
See https://github.com/elemental/Elemental for access to the GitHub repository of Elemental, a modern C++ library for distributed-memory linear algebra.
65.
See http://www.netlib.org/scalapack for details on ScaLAPACK, a high-performance library for distributed-memory linear algebra.
66.
P.
Pulay
, “
Improved SCF convergence acceleration
,”
J. Comput. Chem.
3
,
556
560
(
1982
).
67.
C.
Peng
,
M. C.
Clement
, and
E. F.
Valeev
, “
State-averaged pair natural orbitals for excited states: A route toward efficient equation of motion coupled-cluster
,”
J. Chem. Theory Comput.
14
,
5597
5607
(
2018
).
68.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
69.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
1918
(
1982
).
70.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
71.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
7050
(
1987
).
72.
J.
Noga
,
R. J.
Bartlett
, and
M.
Urban
, “
Towards a full CCSDT model for electron correlation. CCSDT-n models
,”
Chem. Phys. Lett.
134
,
126
132
(
1987
).
73.
G. E.
Scuseria
and
T. J.
Lee
, “
Comparison of coupled-cluster methods which include the effects of connected triple excitations
,”
J. Chem. Phys.
93
,
5851
5855
(
1990
).
74.
V.
Rishi
and
E. F.
Valeev
, “
Can the distinguishable cluster approximation be improved systematically by including connected triples?
,”
J. Chem. Phys.
151
,
064102
(
2019
).
75.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
, “
Toward a systematic molecular orbital theory for excited states
,”
J. Phys. Chem.
96
,
135
149
(
1992
).
76.
D. C.
Comeau
and
R. J.
Bartlett
, “
The equation-of-motion coupled-cluster method: Applications to open- and closed-shell reference states
,”
Chem. Phys. Lett.
207
,
414
423
(
1993
).
77.
P. A.
Pieniazek
,
S. A.
Arnstein
,
S. E.
Bradforth
,
A. I.
Krylov
, and
C. D.
Sherrill
, “
Benchmark full configuration interaction and equation-of-motion coupled-cluster model with single and double substitutions for ionized systems results for prototypical charge transfer systems: Noncovalent ionized dimers
,”
J. Chem. Phys.
127
,
164110
(
2007
).
78.
M.
Nooijen
and
R. J.
Bartlett
, “
Equation of motion coupled cluster method for electron attachment
,”
J. Chem. Phys.
102
,
3629
3647
(
1995
).
79.
F.
Pavošević
,
C.
Peng
,
J. V.
Ortiz
, and
E. F.
Valeev
, “
Communication: Explicitly correlated formalism for second-order single-particle Green’s function
,”
J. Chem. Phys.
147
,
121101
(
2017
).
80.
J. V.
Ortiz
, “
A nondiagonal, renormalized extension of partial third-order quasiparticle theory: Comparisons for closed-shell ionization energies
,”
J. Chem. Phys.
108
,
1008
1014
(
1998
).
81.
N. K.
Teke
,
F.
Pavošević
,
C.
Peng
, and
E. F.
Valeev
, “
Explicitly correlated renormalized second-order Green’s function for accurate ionization potentials of closed-shell molecules
,”
J. Chem. Phys.
150
,
214103
(
2019
).
82.
H.
Koch
and
P.
Jørgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
,
3333
3344
(
1990
).
83.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
84.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
, “
Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD)
,”
J. Chem. Theory Comput.
13
,
3650
3675
(
2017
).
85.
M.
Saitow
,
U.
Becker
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
, “
A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory
,”
J. Chem. Phys.
146
,
164105
(
2017
).
86.
F.
Pavošević
,
C.
Peng
,
P.
Pinski
,
C.
Riplinger
,
F.
Neese
, and
E. F.
Valeev
, “
SparseMaps–A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals
,”
J. Chem. Phys.
146
,
174108
(
2017
).
87.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. 5. Parallel perturbative triples correction for explicitly correlated local coupled cluster with pair natural orbitals
,”
J. Chem. Theory Comput.
14
,
198
215
(
2018
).
88.
T. D.
Crawford
,
A.
Kumar
,
A. P.
Bazanté
, and
R.
Di Remigio
, “
Reduced-scaling coupled cluster response theory: Challenges and opportunities
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1406
(
2019
).
89.
C.
Peng
,
J. A.
Calvin
,
F.
Pavošević
,
J.
Zhang
, and
E. F.
Valeev
, “
Massively parallel implementation of explicitly correlated coupled-cluster singles and doubles using TiledArray framework
,”
J. Phys. Chem. A
120
,
10231
10244
(
2016
).
90.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions
,”
J. Chem. Theory Comput.
10
,
3791
3799
(
2014
).
91.
V. M.
Anisimov
,
G. H.
Bauer
,
K.
Chadalavada
,
R. M.
Olson
,
J. W.
Glenski
,
W. T. C.
Kramer
,
E.
Aprà
, and
K.
Kowalski
, “
Optimization of the coupled cluster implementation in NWChem on petascale parallel architectures
,”
J. Chem. Theory Comput.
10
,
4307
4316
(
2014
).
92.
M. C.
Clement
,
J.
Zhang
,
C. A.
Lewis
,
C.
Yang
, and
E. F.
Valeev
, “
Optimized pair natural orbitals for the coupled cluster methods
,”
J. Chem. Theory Comput.
14
,
4581
4589
(
2018
).
93.
R. C.
Martin
, “
Acyclic visitor
,” in
Pattern Languages of Program Design 3
(
Addison-Wesley Longman Publishing Co., Inc.
,
USA
,
1997
), pp.
93
103
.
94.
S. E.
Dreyfus
and
H. L.
Dreyfus
, “
A five-stage model of the mental activities involved in directed skill acquisition
” (Operations Research Center, University of California, Berkeley, 1980).
95.
S.
Baltes
and
S.
Diehl
, “
Towards a theory of software development expertise
,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018
(
ACM Press
,
2018
), pp.
187
200
.
96.
See http://vergil.chemistry.gatech.edu/resources/programming/index.html for quantum chemistry programming projects, ideal for graduate and advanced undergraduate students.
97.
D. G. A.
Smith
,
L. A.
Burns
,
D. A.
Sirianni
,
D. R.
Nascimento
,
A.
Kumar
,
A. M.
James
,
J. B.
Schriber
,
T.
Zhang
,
B.
Zhang
,
A. S.
Abbott
,
E. J.
Berquist
,
M. H.
Lechner
,
L. A.
Cunha
,
A. G.
Heide
,
J. M.
Waldrop
,
T. Y.
Takeshita
,
A.
Alenaizan
,
D.
Neuhauser
,
R. A.
King
,
A. C.
Simmonett
,
J. M.
Turney
,
H. F.
Schaefer
,
F. A.
Evangelista
,
A. E.
DePrince
 III
,
T. D.
Crawford
,
K.
Patkowski
, and
C. D.
Sherrill
, “
PSI4NUMPY: An interactive quantum chemistry programming environment for reference implementations and rapid development
,”
J. Chem. Theory Comput.
14
,
3504
3511
(
2018
).
98.
B.
Stroustrup
,
The Design and Evolution of C++
(
ACM Press; Addison-Wesley Publishing Co.
,
USA
,
1995
).
You do not currently have access to this content.