Strong Coulomb interaction in atomically thin transition metal dichalcogenides makes these systems particularly promising for studies of excitonic physics. Of special interest are the manifestations of the charged excitons, also known as trions, in the optical properties of two-dimensional semiconductors. In order to describe the optical response of such a system, the exciton interaction with resident electrons should be explicitly taken into account. In this paper, we demonstrate that this can be done in both the trion (essentially, few-particle) and Fermi-polaron (many-body) approaches, which produce equivalent results, provided that the electron density is sufficiently low and the trion binding energy is much smaller than the exciton one. Here, we consider the oscillator strengths of the optical transitions related to the charged excitons, fine structure of trions, and Zeeman effect, as well as photoluminescence of trions illustrating the applicability of both few-particle and many-body models.

1.
J.
Frenkel
, “
On the transformation of light into heat in solids. I
,”
Phys. Rev.
37
,
17
44
(
1931
).
2.
G. H.
Wannier
, “
The structure of electronic excitation levels in insulating crystals
,”
Phys. Rev.
52
,
191
197
(
1937
).
3.
N. F.
Mott
, “
On the absorption of light by crystals
,”
Proc. R. Soc. London, Ser. A
167
,
384
391
(
1938
).
4.
E. F.
Gross
and
N. A.
Karrjew
, “
Light absorption by cuprous oxide crystal in infrared and visible part of the spectrum
,”
Dokl. Akad. Nauk SSSR
84
,
471
(
1952
).
5.
Excitons
, edited by
E. I.
Rashba
and
M. D.
Sturge
(
North-Holland Publishing Company
,
1982
).
6.
E. L.
Ivchenko
,
Optical Spectroscopy of Semiconductor Nanostructures
(
Alpha Science
,
Harrow UK
,
2005
).
7.
C. F.
Klingshirn
,
Semiconductor Optics
(
Springer Berlin Heidelberg
,
2012
).
8.
M. A.
Lampert
, “
Mobile and immobile effective-mass-particle complexes in nonmetallic solids
,”
Phys. Rev. Lett.
1
,
450
453
(
1958
).
9.
R.
Schilling
and
D. C.
Mattis
, “
Bound exciton and hole: An exactly solvable three-body model in any number of dimensions
,”
Phys. Rev. Lett.
49
,
808
811
(
1982
).
10.
B.
Stébé
and
A.
Ainane
, “
Ground state energy and optical absorption of excitonic trions in two dimensional semiconductors
,”
Superlattices Microstruct.
5
,
545
548
(
1989
).
11.
R. A.
Sergeev
and
R. A.
Suris
, “
Ground-state energy of X and X+ trions in a two-dimensional quantum well at an arbitrary mass ratio
,”
Phys. Solid State
43
,
746
751
(
2001
).
12.
K.
Kheng
,
R. T.
Cox
,
M. Y.
d’ Aubigné
,
F.
Bassani
,
K.
Saminadayar
, and
S.
Tatarenko
, “
Observation of negatively charged excitons X in semiconductor quantum wells
,”
Phys. Rev. Lett.
71
,
1752
1755
(
1993
).
13.
G.
Finkelstein
,
H.
Shtrikman
, and
I.
Bar-Joseph
, “
Negatively and positively charged excitons in GaAs/AlxGa1−xAs quantum wells
,”
Phys. Rev. B
53
,
R1709
R1712
(
1996
).
14.
A. V.
Koudinov
,
C.
Kehl
,
A. V.
Rodina
,
J.
Geurts
,
D.
Wolverson
, and
G.
Karczewski
, “
Suris tetrons: Possible spectroscopic evidence for four-particle optical excitations of a two-dimensional electron gas
,”
Phys. Rev. Lett.
112
,
147402
(
2014
).
15.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
16.
G.
Wang
,
A.
Chernikov
,
M. M.
Glazov
,
T. F.
Heinz
,
X.
Marie
,
T.
Amand
, and
B.
Urbaszek
, “
Colloquium: Excitons in atomically thin transition metal dichalcogenides
,”
Rev. Mod. Phys.
90
,
021001
(
2018
).
17.
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
, “
Tightly bound trions in monolayer MoS2
,”
Nat. Mater.
12
,
207
211
(
2013
).
18.
G.
Plechinger
,
P.
Nagler
,
A.
Arora
,
R.
Schmidt
,
A.
Chernikov
,
A. G.
del Águila
,
P. C.
Christianen
,
R.
Bratschitsch
,
C.
Schüller
, and
T.
Korn
, “
Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide
,”
Nat. Commun.
7
,
12715
(
2016
).
19.
E.
Courtade
,
M.
Semina
,
M.
Manca
,
M. M.
Glazov
,
C.
Robert
,
F.
Cadiz
,
G.
Wang
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Pierre
,
W.
Escoffier
,
E. L.
Ivchenko
,
P.
Renucci
,
X.
Marie
,
T.
Amand
, and
B.
Urbaszek
, “
Charged excitons in monolayer WSe2: Experiment and theory
,”
Phys. Rev. B
96
,
085302
(
2017
).
20.
A.
Arora
,
T.
Deilmann
,
T.
Reichenauer
,
J.
Kern
,
S.
Michaelis de Vasconcellos
,
M.
Rohlfing
, and
R.
Bratschitsch
, “
Excited-state trions in monolayer WS2
,”
Phys. Rev. Lett.
123
,
167401
(
2019
).
21.
S.
Borghardt
,
B. E.
Kardynał
,
J.-S.
Tu
,
T.
Taniguchi
, and
K.
Watanabe
, “
Interplay of excitonic complexes in p-doped WSe2 monolayers
,”
Phys. Rev. B
101
,
161402
(
2020
).
22.
M.
Barbone
,
A. R. P.
Montblanch
,
D. M.
Kara
,
C.
Palacios-Berraquero
,
A. R.
Cadore
,
D.
De Fazio
,
B.
Pingault
,
E.
Mostaani
,
H.
Li
,
B.
Chen
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Tongay
,
G.
Wang
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Charge-tuneable biexciton complexes in monolayer WSe2
,”
Nat. Commun.
9
,
3721
(
2018
).
23.
S.-Y.
Chen
,
T.
Goldstein
,
T.
Taniguchi
,
K.
Watanabe
, and
J.
Yan
, “
Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor
,”
Nat. Commun.
9
,
3717
(
2018
).
24.
G. D.
Mahan
, “
Excitons in metals: Infinite hole mass
,”
Phys. Rev.
163
,
612
617
(
1967
).
25.
B.
Roulet
,
J.
Gavoret
, and
P.
Nozières
, “
Singularities in the x-ray absorption and emission of metals. I. First-order parquet calculation
,”
Phys. Rev.
178
,
1072
1083
(
1969
).
26.
P.
Hawrylak
, “
Optical properties of a two-dimensional electron gas: Evolution of spectra from excitons to Fermi-edge singularities
,”
Phys. Rev. B
44
,
3821
3828
(
1991
).
27.
A.
Esser
,
R.
Zimmermann
, and
E.
Runge
, “
Theory of trion spectra in semiconductor nanostructures
,”
Phys. Status Solidi (b)
227
,
317
330
(
2001
).
28.
R. A.
Suris
,
V. P.
Kochereshko
,
G. V.
Astakhov
,
D. R.
Yakovlev
,
W.
Ossau
,
J.
Nürnberger
,
W.
Faschinger
,
G.
Landwehr
,
T.
Wojtowicz
,
G.
Karczewski
, and
J.
Kossut
, “
Excitons and trions modified by interaction with a two-dimensional electron gas
,”
Phys. Status Solidi (b)
227
,
343
352
(
2001
).
29.
R. A.
Suris
, “
Correlation between trion and hole in Fermi distribution in process of trion photo-excitation in doped QWs
,” in
Optical Properties of 2D Systems with Interacting Electrons
, NATO Science series, edited by
R. A.
Suris
,
W.
Ossau
(
Springer
,
2003
).
30.
A. A.
Klochikhin
,
V. P.
Kochereshko
, and
S.
Tatarenko
, “
Influence of free carriers on exciton ground states in quantum wells
,”
J. Lumin.
154
,
310
315
(
2014
).
31.
G. G.
Spink
,
P.
López Ríos
,
N. D.
Drummond
, and
R. J.
Needs
, “
Trion formation in a two-dimensional hole-doped electron gas
,”
Phys. Rev. B
94
,
041410
(
2016
).
32.
S.
Pekar
, “
Local quantum states of electrons in an ideal ion crystal
,”
Zh. Eksp. Teor. Fiz.
16
,
341
348
(
1946
).
33.
L. D.
Landau
and
S. I.
Pekar
, “
Effective mass of a polaron
,”
Zh. Eksp. Teor. Fiz.
18
,
419
(
1948
).
34.
M.
Koschorreck
,
D.
Pertot
,
E.
Vogt
,
B.
Fröhlich
,
M.
Feld
, and
M.
Köhl
, “
Attractive and repulsive Fermi polarons in two dimensions
,”
Nature
485
,
619
622
(
2012
).
35.
R.
Schmidt
,
M.
Knap
,
D. A.
Ivanov
,
J.-S.
You
,
M.
Cetina
, and
E.
Demler
, “
Universal many-body response of heavy impurities coupled to a Fermi sea: A review of recent progress
,”
Rep. Prog. Phys.
81
,
024401
(
2018
).
36.
M.
Sidler
,
P.
Back
,
O.
Cotlet
,
A.
Srivastava
,
T.
Fink
,
M.
Kroner
,
E.
Demler
, and
A.
Imamoglu
, “
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors
,”
Nat. Phys.
13
,
255
(
2016
).
37.
D. K.
Efimkin
and
A. H.
MacDonald
, “
Many-body theory of trion absorption features in two-dimensional semiconductors
,”
Phys. Rev. B
95
,
035417
(
2017
).
38.
Y.-C.
Chang
,
S.-Y.
Shiau
, and
M.
Combescot
, “
Crossover from trion-hole complex to exciton-polaron in n-doped two-dimensional semiconductor quantum wells
,”
Phys. Rev. B
98
,
235203
(
2018
).
39.
M. V.
Durnev
and
M. M.
Glazov
, “
Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides
,”
Phys.-Usp.
61
,
825
845
(
2018
).
40.
A.
Kormányos
,
G.
Burkard
,
M.
Gmitra
,
J.
Fabian
,
V.
Zólyomi
,
N. D.
Drummond
, and
V.
Fal’ko
, “
k · p theory for two-dimensional transition metal dichalcogenide semiconductors
,”
2D Mater.
2
,
022001
(
2015
).
41.
G.
Wang
,
C.
Robert
,
M. M.
Glazov
,
F.
Cadiz
,
E.
Courtade
,
T.
Amand
,
D.
Lagarde
,
T.
Taniguchi
,
K.
Watanabe
,
B.
Urbaszek
, and
X.
Marie
, “
In-plane propagation of light in transition metal dichalcogenide monolayers: Optical selection rules
,”
Phys. Rev. Lett.
119
,
047401
(
2017
).
42.
H.
Yu
,
G.-B.
Liu
,
P.
Gong
,
X.
Xu
, and
W.
Yao
, “
Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides
,”
Nat. Commun.
5
,
3876
(
2014
).
43.
H.
Yu
,
X.
Cui
,
X.
Xu
, and
W.
Yao
, “
Valley excitons in two-dimensional semiconductors
,”
Natl. Sci. Rev.
2
,
57
70
(
2015
).
44.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
88
,
045318
(
2013
).
45.
B.
Ganchev
,
N.
Drummond
,
I.
Aleiner
, and
V.
Fal’ko
, “
Three-particle complexes in two-dimensional semiconductors
,”
Phys. Rev. Lett.
114
,
107401
(
2015
).
46.
R.
Combescot
, “
Trion ground-state energy: Simple results
,”
Phys. Rev. B
100
,
245201
(
2019
).
47.
C.
Fey
,
P.
Schmelcher
,
A.
Imamoglu
, and
R.
Schmidt
, “
Theory of exciton-electron scattering in atomically thin semiconductors
,”
Phys. Rev. B
101
,
195417
(
2020
).
48.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-relativistic Theory
(
Butterworth-Heinemann
,
Oxford
,
1977
).
49.
M.
Klawunn
and
A.
Recati
, “
Fermi polaron in two dimensions: Importance of the two-body bound state
,”
Phys. Rev. A
84
,
033607
(
2011
).
50.
M.
Zarenia
,
D.
Neilson
,
B.
Partoens
, and
F. M.
Peeters
, “
Wigner crystallization in transition metal dichalcogenides: A new approach to correlation energy
,”
Phys. Rev. B
95
,
115438
(
2017
).
51.

The full Green’s function of excitons depends, generally, on two wavevectors Gx(ε;k,k); since our system is translationally invariant, one can put k′ = k. The full Green’s function will be needed in Sec. V B, where we take into account exciton–electron and exciton–phonon interactions simultaneously.

52.

Generally, Γ also includes the radiative damping of the exciton, which, however, needs to be found self-consistently from the solution of Maxwell equations with susceptibility Eq. (11), see Refs. 6 and 54.

53.
M. M.
Glazov
,
T.
Amand
,
X.
Marie
,
D.
Lagarde
,
L.
Bouet
, and
B.
Urbaszek
, “
Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides
,”
Phys. Rev. B
89
,
201302
(
2014
).
54.
H. H.
Fang
,
B.
Han
,
C.
Robert
,
M. A.
Semina
,
D.
Lagarde
,
E.
Courtade
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Amand
,
B.
Urbaszek
,
M. M.
Glazov
, and
X.
Marie
, “
Control of the exciton radiative lifetime in van der Waals heterostructures
,”
Phys. Rev. Lett.
123
,
067401
(
2019
).
55.
M. M.
Glazov
and
A.
Chernikov
, “
Breakdown of the static approximation for free carrier screening of excitons in monolayer semiconductors
,”
Phys. Status Solidi (b)
255
,
1800216
(
2018
).
56.
Y.-W.
Chang
and
D. R.
Reichman
, “
Many-body theory of optical absorption in doped two-dimensional semiconductors
,”
Phys. Rev. B
99
,
125421
(
2019
).
57.
M. R.
Carbone
,
M. Z.
Mayers
, and
D. R.
Reichman
, “
Microscopic model of the doping dependence of line widths in monolayer transition metal dichalcogenides
,”
J. Chem. Phys.
152
,
194705
(
2020
).
58.
B.
Stébé
,
E.
Feddi
,
A.
Ainane
, and
F.
Dujardin
, “
Optical and magneto-optical absorption of negatively charged excitons in three- and two-dimensional semiconductors
,”
Phys. Rev. B
58
,
9926
9932
(
1998
).
59.
A.
Esser
,
E.
Runge
,
R.
Zimmermann
, and
W.
Langbein
, “
Photoluminescence and radiative lifetime of trions in GaAs quantum wells
,”
Phys. Rev. B
62
,
8232
8239
(
2000
).
60.

Strictly speaking, this result is valid at EFγ; otherwise, the omission of δK in the resonant denominator is not justified.

61.
G. V.
Astakhov
,
V. P.
Kochereshko
,
D. R.
Yakovlev
,
W.
Ossau
,
J.
Nürnberger
,
W.
Faschinger
, and
G.
Landwehr
, “
Oscillator strength of trion states in ZnSe-based quantum wells
,”
Phys. Rev. B
62
,
10345
(
2000
).
62.
G. V.
Astakhov
,
V. P.
Kochereshko
,
D. R.
Yakovlev
,
W.
Ossau
,
J.
Nurnberger
,
W.
Faschinger
,
G.
Landwehr
,
T.
Wojtowicz
,
G.
Karczewski
, and
J.
Kossut
, “
Optical method for the determination of carrier density in modulation-doped quantum wells
,”
Phys. Rev. B
65
,
115310
(
2002
).
63.
M.
Danovich
,
V.
Zólyomi
, and
V. I.
Fal’ko
, “
Dark trions and biexcitons in WS2 and WSe2 made bright by e-e scattering
,”
Sci. Rep.
7
,
45998
(
2017
).
64.
J.
Zipfel
 et al., “
Light-matter coupling and non-equilibrium dynamics of exchange-split trions in monolayer WS2
,” arXiv:2005.03870 (
2020
).
65.
G.
Wang
,
L.
Bouet
,
M. M.
Glazov
,
T.
Amand
,
E. L.
Ivchenko
,
E.
Palleau
,
X.
Marie
, and
B.
Urbaszek
, “
Magneto-optics in transition metal diselenide monolayers
,”
2D Mater.
2
,
034002
(
2015
).
66.
J. F.
Janak
, “
g factor of the two-dimensional interacting electron gas
,”
Phys. Rev.
178
,
1416
1418
(
1969
).
67.
D. V.
Rybkovskiy
,
I. C.
Gerber
, and
M. V.
Durnev
, “
Atomically inspired k · p approach and valley Zeeman effect in transition metal dichalcogenide monolayers
,”
Phys. Rev. B
95
,
155406
(
2017
).
68.
T.
Woźniak
,
P. E.
Faria Junior
,
G.
Seifert
,
A.
Chaves
, and
J.
Kunstmann
, “
Exciton g-factors of van der Waals heterostructures from first principles calculations
,”
Phys. Rev. B
101
,
235408
(
2020
).
69.
J.
Förste
,
N. V.
Tepliakov
,
S. Y.
Kruchinin
,
J.
Lindlau
,
V.
Funk
,
M.
Förg
,
K.
Watanabe
,
T.
Taniguchi
,
A. S.
Baimuratov
, and
A.
Högele
, “
Exciton g-factors in monolayer and bilayer WSe2 from experiment and theory
,” arXiv:2002.11646 (
2020
).
70.
T.
Deilmann
,
P.
Krüger
, and
M.
Rohlfing
, “
Ab-initio studies of exciton g factors: Monolayer transition metal dichalcogenides in magnetic fields
,”
Phys. Rev. Lett.
124
,
226402
(
2020
).
71.
F.
Xuan
and
S. Y.
Quek
, “
Valley Zeeman effect and Landau levels in two-dimensional transition metal dichalcogenides
,” arXiv:2002.11993 (
2020
).
72.
P.
Nagler
,
M. V.
Ballottin
,
A. A.
Mitioglu
,
M. V.
Durnev
,
T.
Taniguchi
,
K.
Watanabe
,
A.
Chernikov
,
C.
Schüller
,
M. M.
Glazov
,
P. C. M.
Christianen
, and
T.
Korn
, “
Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2
,”
Phys. Rev. Lett.
121
,
057402
(
2018
).
73.
A.
Srivastava
,
M.
Sidler
,
A. V.
Allain
,
D. S.
Lembke
,
A.
Kis
, and
A.
Imamoğlu
, “
Valley Zeeman effect in elementary optical excitations of monolayer WSe2
,”
Nat. Phys.
11
,
141
147
(
2015
).
74.
D.
MacNeill
,
C.
Heikes
,
K. F.
Mak
,
Z.
Anderson
,
A.
Kormányos
,
V.
Zólyomi
,
J.
Park
, and
D. C.
Ralph
, “
Breaking of valley degeneracy by magnetic field in monolayer MoSe2
,”
Phys. Rev. Lett.
114
,
037401
(
2015
).
75.
V. N.
Abakumov
,
V. I.
Perel
, and
I. N.
Yassievich
,
Nonradiative Recombination in Semiconductors
(
North Holland
,
Amsterdam
,
1991
).
76.
M.
Danovich
,
I. L.
Aleiner
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Fast relaxation of photo-excited carriers in 2-D transition metal dichalcogenides
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
168
172
(
2017
).
77.
T.
Sohier
,
M.
Calandra
, and
F.
Mauri
, “
Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations
,”
Phys. Rev. B
94
,
085415
(
2016
).
78.
D.
Van Tuan
,
A. M.
Jones
,
M.
Yang
,
X.
Xu
, and
H.
Dery
, “
Virtual trions in the photoluminescence of monolayer transition-metal dichalcogenides
,”
Phys. Rev. Lett.
122
,
217401
(
2019
).
79.
A.
Manassen
,
E.
Cohen
,
A.
Ron
,
E.
Linder
, and
L. N.
Pfeiffer
, “
Trion dephasing by electron scattering in gaas/alas quantum wells
,”
J. Opt. Soc. Am. B
13
,
1372
1375
(
1996
).
80.
L. I.
Deych
,
M. V.
Erementchouk
,
A. A.
Lisyansky
,
E. L.
Ivchenko
, and
M. M.
Voronov
, “
Exciton luminescence in one-dimensional resonant photonic crystals: A phenomenological approach
,”
Phys. Rev. B
76
,
075350
(
2007
).
81.
N. S.
Averkiev
,
M. M.
Glazov
, and
A. N.
Poddubnyi
, “
Collective modes of quantum dot ensembles in microcavities
,”
J. Exp. Theor. Phys.
108
,
836
844
(
2009
).
82.
O.
Cotleţ
,
F.
Pientka
,
R.
Schmidt
,
G.
Zarand
,
E.
Demler
, and
A.
Imamoglu
, “
Transport of neutral optical excitations using electric fields
,”
Phys. Rev. X
9
,
041019
(
2019
).
83.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Statistical Physics: Theory of the Condensed State
(
Butterworth-Heinemann
,
Oxford
,
2002
).
84.
J. R.
Engelbrecht
and
M.
Randeria
, “
New collective mode and corrections to Fermi-liquid theory in two dimensions
,”
Phys. Rev. Lett.
65
,
1032
1035
(
1990
).
85.
J. R.
Engelbrecht
and
M.
Randeria
, “
Low-density repulsive Fermi gas in two dimensions: Bound-pair excitations and Fermi-liquid behavior
,”
Phys. Rev. B
45
,
12419
12434
(
1992
).
86.
R.
Schmidt
,
T.
Enss
,
V.
Pietilä
, and
E.
Demler
, “
Fermi polarons in two dimensions
,”
Phys. Rev. A
85
,
021602
(
2012
).
You do not currently have access to this content.