Understanding the permeation of molecules through lipid membranes is fundamental for predicting the cellular uptake of solutes and drug delivery mechanisms. In molecular simulations, the usual approach is to compute the free energy (FE) profile of a molecule across a model lipid bilayer, which can then be used to estimate the permeability of the molecule. Umbrella Sampling (US), which involves carrying out a series of biased simulations along a defined reaction coordinate (usually the bilayer normal direction), is a popular method for the computation of such FE profiles. However, US can be challenging to implement because the results are dependent on the strength of the biasing potential and the spacing of windows along the reaction coordinate, which, in practice, are usually optimized by an inefficient trial and error approach. The Steered Molecular Dynamics implementation of the Jarzynski Equality (JE-SMD) has been identified as an alternative to equilibrium sampling methods for measuring the FE change across a reaction coordinate. In the JE-SMD approach, equilibrium FE values are evaluated from the average of rapid non-equilibrium trajectories, thus avoiding the practical issues that come with US. Here, we use three different corrections of the JE-SMD method to calculate the FE change for the translocation of two aromatic substrates, phenylalanine and toluene, across a lipid bilayer and compare the accuracy and computational efficiency of these approaches to the results obtained using US. We show evidence that when computing the free energy profile, the JE-SMD approach suffers from insufficient sampling convergence of the bilayer environment and is dependent on the characteristic of the aromatic substrate itself. We deduce that, despite its drawbacks, US remains the more viable approach of the two for computing the FE profile.

1.
M.
Edidin
, “
Lipids on the Frontier: A century of cell-membrane bilayers
,”
Nat. Rev. Mol. Cell Biol.
4
,
414
418
(
2003
).
2.
D. M.
Engelman
, “
Membranes are more mosaic than fluid
,”
Nature
438
,
578
580
(
2005
).
3.
E.
Awoonor-Williams
and
C. N.
Rowley
, “
Molecular simulation of nonfacilitated membrane permeation
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
1672
1687
(
2016
).
4.
M.
Kang
and
S. M.
Loverde
, “
Molecular simulation of the concentration-dependent interaction of hydrophobic drugs with model cellular membranes
,”
J. Phys. Chem. B
118
,
11965
11972
(
2014
).
5.
N. J.
Yang
and
M. J.
Hinner
, “
Getting across the cell membrane: An overview for small molecules, peptides, and proteins
,”
Methods Mol. Biol.
1266
,
29
53
(
2015
).
6.
S. J.
Marrink
and
H. J. C.
Berendsen
, “
Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations
,”
J. Phys. Chem.
100
,
16729
16738
(
1996
).
7.
W.
Shinoda
, “
Permeability across lipid membranes
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
2254
2265
(
2016
).
8.
C.
Neale
and
R.
Pomès
, “
Sampling errors in free energy simulations of small molecules in lipid bilayers
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
2539
2548
(
2016
).
9.
R. M.
Venable
,
A.
Krämer
, and
R. W.
Pastor
, “
Molecular dynamics simulations of membrane permeability
,”
Chem. Rev.
119
,
5954
5997
(
2019
).
10.
T.
Pieńko
and
J.
Trylska
, “
Computational methods used to explore transport events in biological systems
,”
J. Chem. Inf. Model.
59
,
1772
1781
(
2019
).
11.
S.-J.
Marrink
and
H. J. C.
Berendsen
, “
Simulation of water transport through a lipid membrane
,”
J. Phys. Chem.
98
,
4155
4168
(
1994
).
12.
G. M.
Torrie
and
J. P.
Valleau
, “
Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid
,”
Chem. Phys. Lett.
28
,
578
581
(
1974
).
13.
J.
Shankar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendson
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
14.
J.
Kästner
, “
Umbrella sampling
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
932
942
(
2011
).
15.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
16.
S.
Park
and
K.
Schulten
, “
Calculating potentials of mean force from steered molecular dynamics simulations
,”
J. Chem. Phys.
120
,
5946
(
2004
).
17.
R. C.
Lua
and
A. Y.
Grosberg
, “
Practical applicability of the Jarzynski relation in statistical mechanics: A pedagogical example
,”
J. Phys. Chem. B
109
,
6805
6811
(
2005
).
18.
T.
Bastug
,
P.
Chen
,
S. M.
Patra
, and
S.
Kuyucak
, “
Potential of mean force calculations of ligand binding to ion channels from Jarzynski’s equality and umbrella sampling
,”
J. Chem. Phys.
128
,
155104
(
2008
).
19.
T.
Bastug
and
S.
Kuyucak
, “
Application of Jarzynski’s equality in simple versus complex systems
,”
Chem. Phys. Lett.
436
,
383
387
(
2007
).
20.
D.
Collin
,
F.
Ritort
,
C.
Jarzynski
,
S. B.
Smith
,
I.
Tinoco
, Jr.
, and
C.
Busamante
, “
Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies
,”
Nat. Lett.
90
,
231
234
(
1998
).
21.
M.
Orsi
and
J. W.
Essex
, “
Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: Insights from coarse-grain molecular dynamics simulations
,”
Faraday Discuss.
161
,
249
272
(
2013
).
22.
M.
Orsi
and
J. W.
Essex
, “
The ELBA force field for coarse-grain modeling of lipid membranes
,”
PLoS One
6
,
e28637
(
2011
).
23.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general AMBER force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
24.
G.
Landrum
, “
RDKit: Open-source cheminformatics
,” Release 2015.09.1: 1105, available at http://www.rdkit.org.
25.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchinson
, “
Open Babel: An open chemical toolbox
,”
J. Cheminf.
3
,
33
(
2011
).
26.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
27.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
(
1992
).
28.
S.
Genheden
and
J. W.
Essex
, “
A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes
,”
J. Chem. Theory Comput.
11
,
4749
4759
(
2015
).
29.
See http://membrane.urmc.rochester.edu/content/wham for WHAM: The weighted histogram analysis method.
30.
J.
Domanski
,
G.
Hedger
,
R. B.
Best
,
P. J.
Stanfield
, and
M. S. P.
Sansom
, “
Convergence and sampling in determining free energy landscapes for membrane protein association
,”
J. Phys. Chem. B
121
,
3364
3375
(
2017
).
31.
J.
Gore
,
F.
Ritort
, and
C.
Bustamante
, “
Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
12564
12569
(
2003
).
32.
X.
Daura
,
R.
Affentranger
, and
A. E.
Mark
, “
On the relative merits of equilibrium and non-equilibrium simulations for the estimation of free-energy differences
,”
ChemPhysChem
11
,
3734
3743
(
2010
).
33.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
34.
Y.
Wang
,
P.
Gkeka
,
J. E.
Fuchs
,
K. R.
Liedl
, and
Z.
Cournia
, “
DPPC-cholesterol phase diagram using coarse-grained molecular dynamics simulation
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
2846
2857
(
2016
).
35.
D. P.
Tieleman
,
L. R.
Forrest
,
M. S. P.
Sansom
, and
H. J. C.
Berendsen
, “
Lipid properties and the orientation of aromatic residues in OmpF, Influenza M2, Alamethicin systems: Molecular dynamics simulations
,”
Biochemistry
37
,
17554
17561
(
1998
).
36.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
D. L.
Dotson
,
J.
Domanski
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference, edited by S. Benthall and S. Rostrup
(
2016
), pp.
98
105
.
37.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
38.
O.
Berger
,
O.
Edholm
, and
F.
Jähnig
, “
Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure,and constant temperature
,”
Biophys. J.
72
,
2002
2013
(
1997
).
39.
T. V.
Pogorelov
,
J. V.
Vermaas
,
M. J.
Arcario
, and
E.
Tajkhorshid
, “
Partitioning of amino acids into model membrane: Capturing the interface
,”
J. Phys. Chem. B
118
,
1481
1492
(
2014
).
40.
J. L.
MacCallum
,
W. F. D.
Bennett
, and
D. P.
Tieleman
, “
Distribution of amino acids in a lipid bilayer from computer simulations
,”
Biophys. J.
94
,
3393
3404
(
2008
).
41.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
, “
The MARTINI coarse-grained force field: Extension to proteins
,”
J. Chem. Theory Comput.
4
,
819
834
(
2008
).
42.
W.-M.
Yau
,
W. C.
Wimley
,
K.
Gawrisch
, and
S. H.
White
, “
The preference of tryptophan for membrane interfaces
,”
Biochemistry
37
,
14713
14718
(
1998
).
43.
K. E.
Norman
and
H.
Nymeyer
, “
Indole localization in lipid membranes revealed by molecular simulation
,”
Biophys. J.
91
,
2046
2054
(
2006
).
44.
Z.
Cao
,
Y.
Bian
,
G.
Hu
,
L.
Zhao
,
Z.
Kong
,
Y.
Yang
,
J.
Wang
, and
Y.
Zhou
, “
Bias-exchange metadynamics simulation of membrane permeation of 20 amino acids
,”
Int. J. Mol. Sci.
19
,
885
(
2018
).
45.
A.
Kukol
, “
Lipid models for united-atom molecular dynamics simulations of proteins
,”
J. Chem. Theory Comput.
5
,
615
626
(
2009
).
46.
B. L.
Lee
,
K.
Kuczera
,
C. R.
Middaugh
, and
G. S.
Jas
, “
Permeation of the three aromatic dipeptides through lipid bilayers: Experimental and computational study
,”
J. Chem. Phys.
144
,
245103
(
2016
).
47.
A. E.
Cardenas
,
G. S.
Jas
,
K. Y.
DeLeon
,
W. A.
Hegefeld
,
K.
Kuczera
, and
R.
Elber
, “
Unassisted transport of N-acetyl-l-tryptophanamide through membrane: Experiment and simulation of kinetics
,”
J. Phys. Chem. B
116
,
2739
2750
(
2012
).
48.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
, and
W. W.
Parson
, “
Modeling electrostatic effects in proteins
,”
Biochim. Biophys. Acta
1764
,
1647
1676
(
2006
).
49.
O.
Perisic
and
H.
Lu
, “
On the improvement of free-energy calculation from steered molecular dynamics simulations using adaptive stochastic perturbation protocols
,”
PLoS One
9
,
e101810
(
2014
).
50.
I.
Echeverria
and
L. M.
Amzel
, “
Estimation of free-energy differences from computed work distributions: An application of Jarzynski’s equality
,”
J. Phys. Chem. B
116
,
10986
10995
(
2012
).

Supplementary Material

You do not currently have access to this content.