Knowledge of the electronic stopping curve for swift ions, Se(v), particularly around the Bragg peak, is important for understanding radiation damage. Experimentally, however, the determination of such a feature for light ions is very challenging, especially in disordered systems such as liquid water and biological tissue. Recent developments in real-time time-dependent density functional theory (rt-TDDFT) have enabled the calculation of Se(v) along nm-sized trajectories. However, it is still a challenge to obtain a meaningful statistically averaged Se(v) that can be compared to observations. In this work, taking advantage of the correlation between the local electronic structure probed by the projectile and the distance from the projectile to the atoms in the target, we devise a trajectory pre-sampling scheme to select, geometrically, a small set of short trajectories to accelerate the convergence of the averaged Se(v) computed via rt-TDDFT. For protons in liquid water, we first calculate the reference probability distribution function (PDF) for the distance from the proton to the closest oxygen atom, ϕR(rpO), for a trajectory of a length similar to those sampled experimentally. Then, short trajectories are sequentially selected so that the accumulated PDF reproduces ϕR(rpO) to increasingly high accuracy. Using these pre-sampled trajectories, we demonstrate that the averaged Se(vp) converges in the whole velocity range with less than eight trajectories, while other averaging methods using randomly and uniformly distributed trajectories require approximately ten times the computational effort. This allows us to compare the Se(vp) curve to experimental data and assess widely used empirical tables based on Bragg’s rule.

1.
W. H.
Bragg
and
R.
Kleeman
, “
On the α particles of radium, and their loss of range in passing through various atoms and molecules
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
10
,
318
340
(
1905
).
2.
N.
Bohr
, “
On the theory of the decrease of velocity of moving electrified particles on passing through matter
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
25
,
10
31
(
1913
).
3.
G.
Kraft
, “
Tumor therapy with heavy charged particles
,”
Prog. Part. Nucl. Phys.
45
,
S473
S544
(
2000
).
4.
R.
Baskar
,
K. A.
Lee
,
R.
Yeo
, and
K.-W.
Yeoh
, “
Cancer and radiation therapy: Current advances and future directions
,”
Int. J. Med. Sci.
9
,
193
199
(
2012
).
5.
A. V.
Solov’yov
,
Nanoscale Insights into Ion-Beam Cancer Therapy
(
Springer International Publishing
,
2016
), pp.
1
498
.
6.
L.
Calcagno
,
G.
Compagnini
, and
G.
Foti
, “
Structural modification of polymer films by ion irradiation
,”
Nucl. Inst. Methods Phys. Res., Sect. B
65
,
413
422
(
1992
).
7.
G. S.
Was
,
Fundamentals of Radiation Materials Science: Metals and Alloys
(
Springer Berlin Heidelberg
,
2007
), pp.
1
827
.
8.
F.
Granberg
,
K.
Nordlund
,
M. W.
Ullah
,
K.
Jin
,
C.
Lu
,
H.
Bei
,
L. M.
Wang
,
F.
Djurabekova
,
W. J.
Weber
, and
Y.
Zhang
, “
Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
,”
Phys. Rev. Lett.
116
,
135504
(
2016
).
9.
F. A.
Cucinotta
and
M.
Durante
, “
Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings
,”
Lancet Oncol.
7
,
431
435
(
2006
).
10.
F.
Ferrari
and
E.
Szuszkiewicz
, “
Cosmic rays: A review for astrobiologists
,”
Astrobiology
9
,
413
436
(
2009
).
11.
F. A.
Cucinotta
,
M.-H. Y.
Kim
, and
L. J.
Chappell
,
Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks
(
NASA Technical Memorandum
,
2012
), p.
217361
.
12.
P.
Jiggens
,
M.-A.
Chavy-Macdonald
,
G.
Santin
,
A.
Menicucci
,
H.
Evans
, and
A.
Hilgers
, “
The magnitude and effects of extreme solar particle events
,”
J. Space Weather Space Clim.
4
,
A20
(
2014
).
13.
S.
Duzellier
, “
Radiation effects on electronic devices in space
,”
Aerosp. Sci. Technol.
9
,
93
99
(
2005
).
14.
C. P.
Race
,
D. R.
Mason
,
M. W.
Finnis
,
W. M. C.
Foulkes
,
A. P.
Horsfield
, and
A. P.
Sutton
, “
The treatment of electronic excitations in atomistic models of radiation damage in metals
,”
Rep. Prog. Phys.
73
,
116501
(
2010
).
15.
J. F.
Ziegler
and
J. P.
Biersack
,
SRIM, Stopping Power and Range of Ions in Matter
(
Ion Implantation Press
,
2008
).
16.
E.
Rutherford
, “
The scattering of α and β particles by matter and the structure of the atom
,”
London, Edinburgh, Dublin, Philos. Mag. J. Sci.
21
,
669
688
(
1911
).
17.
D.
Blanchin
,
J.-C.
Poizat
,
J.
Remillieux
, and
A.
Sarazin
, “
Experimental determination of the energy loss of protons channeled through an aluminum single-crystal
,”
Nucl. Instrum. Methods
70
,
98
102
(
1969
).
18.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter (2010)
,”
Nucl. Inst. Methods Phys. Res., Sect. B
268
,
1818
1823
(
2010
).
19.
M.
Shimizu
,
M.
Kaneda
,
T.
Hayakawa
,
H.
Tsuchida
, and
A.
Itoh
, “
Stopping cross sections of liquid water for MeV energy protons
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
2667
2670
(
2009
).
20.
M.
Shimizu
,
T.
Hayakawa
,
M.
Kaneda
,
H.
Tsuchida
, and
A.
Itoh
, “
Stopping cross-sections of liquid water for 0.3–2.0 MeV protons
,”
Vacuum
84
,
1002
1004
(
2010
).
21.
T.
Siiskonen
,
H.
Kettunen
,
K.
Peräjärvi
,
A.
Javanainen
,
M.
Rossi
,
W. H.
Trzaska
,
J.
Turunen
, and
A.
Virtanen
, “
Energy loss measurement of protons in liquid water
,”
Phys. Med. Biol.
56
,
2367
2374
(
2011
).
22.
R.
Garcia-Molina
,
I.
Abril
,
P.
De Vera
, and
H.
Paul
, “
Comments on recent measurements of the stopping power of liquid water
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
299
,
51
53
(
2013
).
23.
Y.
Yao
,
D. C.
Yost
, and
Y.
Kanai
, “
K-shell core electron excitations in the electronic stopping of protons in water
,”
Phys. Rev. Lett.
123
,
066401
(
2019
).
24.
P.
Sigmund
,
Particle Penetration and Radiation Effects Volume 2
, Springer Series in Solid-State Sciences Vol. 179 (
Springer International Publishing
,
Cham
,
2014
).
25.
E.
Fermi
and
E.
Teller
, “
The capture of negative mesotrons in matter
,”
Phys. Rev.
72
,
399
408
(
1947
).
26.
J.
Lindhard
and
A.
Winther
, “
Stopping power of electron gas and equipartition rule
,”
Mat. Fys. Medd. Dan. Vid. Selsk
34
(
4
),
2
22
(
1964
), available at http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-34-4.pdf.
27.
I.
Campillo
,
J. M.
Pitarke
, and
A. G.
Eguiluz
, “
Electronic stopping power of aluminum crystal
,”
Phys. Rev. B
58
,
10307
10314
(
1998
).
28.
A. A.
Shukri
,
F.
Bruneval
, and
L.
Reining
, “
Ab initio electronic stopping power of protons in bulk materials
,”
Phys. Rev. B
93
,
035128
(
2016
).
29.
J. M.
Pruneda
,
D.
Sánchez-Portal
,
A.
Arnau
,
J. I.
Juaristi
, and
E.
Artacho
, “
Electronic stopping power in LiF from first principles
,”
Phys. Rev. Lett.
99
,
235501
(
2007
).
30.
A. A.
Correa
, “
Calculating electronic stopping power in materials from first principles
,”
Comput. Mater. Sci.
150
,
291
303
(
2018
).
31.
D. C.
Yost
and
Y.
Kanai
, “
Electronic stopping for protons and α particles from first-principles electron dynamics: The case of silicon carbide
,”
Phys. Rev. B
94
,
115107
(
2016
).
32.
S.
Incerti
,
I.
Kyriakou
,
M. A.
Bernal
,
M. C.
Bordage
,
Z.
Francis
,
S.
Guatelli
,
V.
Ivanchenko
,
M.
Karamitros
,
N.
Lampe
,
S. B.
Lee
,
S.
Meylan
,
C. H.
Min
,
W. G.
Shin
,
P.
Nieminen
,
D.
Sakata
,
N.
Tang
,
C.
Villagrasa
,
H. N.
Tran
, and
J. M. C.
Brown
, “
Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA project
,”
Med. Phys.
45
,
e722
e739
(
2018
).
33.
T.
Liamsuwan
,
S.
Uehara
,
D.
Emfietzoglou
, and
H.
Nikjoo
, “
Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water
,”
Int. J. Radiat. Biol.
87
,
141
160
(
2011
).
34.
M. E.
Alcocer-Ávila
,
M. A.
Quinto
,
J. M.
Monti
,
R. D.
Rivarola
, and
C.
Champion
, “
Proton transport modeling in a realistic biological environment by using TILDA-V
,”
Sci. Rep.
9
,
14030
(
2019
).
35.
H.
Nikjoo
,
D.
Emfietzoglou
,
T.
Liamsuwan
,
R.
Taleei
,
D.
Liljequist
, and
S.
Uehara
, “
Radiation track, DNA damage and response—A review
,”
Rep. Prog. Phys.
79
,
116601
(
2016
).
36.
M.
Dingfelder
,
M.
Inokuti
, and
H. G.
Paretzke
, “
Inelastic-collision cross sections of liquid water for interactions of energetic protons
,”
Radiat. Phys. Chem.
59
,
255
275
(
2000
).
37.
D.
Emfietzoglou
,
M.
Moscovitch
, and
A.
Pathak
, “
Inelastic cross-sections of energetic protons in liquid water calculated by model dielectric functions and optical data
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
212
,
101
109
(
2003
).
38.
I.
Abril
,
R.
Garcia-Molina
,
C. D.
Denton
,
I.
Kyriakou
, and
D.
Emfietzoglou
, “
Energy loss of hydrogen- and helium-ion beams in DNA: Calculations based on a realistic energy-loss function of the target
,”
Radiat. Res.
175
,
247
255
(
2011
).
39.
P.
De Vera
,
R.
Garcia-Molina
, and
I.
Abril
, “
Angular and energy distributions of electrons produced in arbitrary biomaterials by proton impact
,”
Phys. Rev. Lett.
114
,
018101
(
2015
).
40.
C.
Race
,
The Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics
(
Springer
,
2011
).
41.
A. E.
Sand
,
R.
Ullah
, and
A. A.
Correa
, “
Heavy ion ranges from first-principles electron dynamics
,”
npj Comput. Mater.
5
,
43
(
2019
).
42.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, “
Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium
,”
Phys. Rev. B
77
,
075133
(
2008
).
43.
R.
Ullah
,
F.
Corsetti
,
D.
Sánchez-Portal
, and
E.
Artacho
, “
Electronic stopping power in a narrow band gap semiconductor from first principles
,”
Phys. Rev. B
91
,
125203
(
2015
).
44.
V.
Rizzi
,
T. N.
Todorov
,
J. J.
Kohanoff
, and
A. A.
Correa
, “
Electron-phonon thermalization in a scalable method for real-time quantum dynamics
,”
Phys. Rev. B
93
,
024306
(
2016
).
45.
See https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html for NIST, stopping power and range tables for protons in various materials; accessed 10 January 2020.
46.
D. I.
Thwaites
, “
Bragg’s rule of stopping power additivity: A compilation and summary of results
,”
Radiat. Res.
95
,
495
518
(
1983
).
47.
See http://www.srim.org/SRIM/Compounds.htm for a simple way to estimate the changes in the stopping power in compounds using Bragg’s rule; accessed 30 February 2020.
48.
A. A.
Correa
,
J.
Kohanoff
,
E.
Artacho
,
D.
Sánchez-Portal
, and
A.
Caro
, “
Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage
,”
Phys. Rev. Lett.
108
,
213201
(
2012
).
49.
A.
Schleife
,
Y.
Kanai
, and
A. A.
Correa
, “
Accurate atomistic first-principles calculations of electronic stopping
,”
Phys. Rev. B
91
,
14306
(
2015
).
50.
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
, “
Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power
,”
Phys. Rev. B
96
,
115134
(
2017
).
51.
R.
Ullah
,
E.
Artacho
, and
A. A.
Correa
, “
Core electrons in the electronic stopping of heavy ions
,”
Phys. Rev. Lett.
121
,
116401
(
2018
); arXiv:1802.04890.
52.
I.
Maliyov
,
J.-P.
Crocombette
, and
F.
Bruneval
, “
Electronic stopping power from time-dependent density-functional theory in Gaussian basis
,”
Eur. Phys. J. B
91
,
172
(
2018
).
53.
C.-K.
Li
,
F.
Wang
,
C.-Z.
Gao
,
B.
Liao
,
X.-P.
Ouyang
, and
F.-S.
Zhang
, “
Nonlinear electronic stopping power of channeled slow light ions in ZnSe: Evidence of energy loss caused by formation and breaking of chemical bond
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
426
,
41
45
(
2018
).
54.
C.-K.
Li
,
S.
Liu
,
Q.
Cao
,
F.
Wang
,
X.-P.
Ouyang
, and
F.-S.
Zhang
, “
Effect of resonant coherent excitation on the electronic stopping of slow channeled ions
,”
Phys. Rev. A
100
,
052707
(
2019
).
55.
K. G.
Reeves
,
Y.
Yao
, and
Y.
Kanai
, “
Electronic stopping power in liquid water for protons and α particles from first principles
,”
Phys. Rev. B
94
,
041108
(
2016
).
56.
T. C.
Slaba
,
A. A.
Bahadori
,
B. D.
Reddell
,
R. C.
Singleterry
,
M. S.
Clowdsley
, and
S. R.
Blattnig
, “
Optimal shielding thickness for galactic cosmic ray environments
,”
Life Sci. Space Res.
12
,
1
15
(
2017
).
57.
L.
Röstel
,
J.
Guo
,
S.
Banjac
,
R. F.
Wimmer-Schweingruber
, and
B.
Heber
, “
Subsurface radiation environment of mars and its implication for shielding protection of future habitats
,”
J. Geophys. Res. Planets
125
,
e2019JE006246
, (
2020
).
58.
C.
Attaccalite
,
M.
Grüning
, and
A.
Marini
, “
Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe–Salpeter equation
,”
Phys. Rev. B
84
,
245110
(
2011
).
59.
D.
Sangalli
,
A.
Ferretti
,
H.
Miranda
,
C.
Attaccalite
,
I.
Marri
,
E.
Cannuccia
,
P.
Melo
,
M.
Marsili
,
F.
Paleari
,
A.
Marrazzo
,
G.
Prandini
,
P.
Bonfà
,
M. O.
Atambo
,
F.
Affinito
,
M.
Palummo
,
A.
Molina-Sánchez
,
C.
Hogan
,
M.
Grüning
,
D.
Varsano
, and
A.
Marini
, “
Many-body perturbation theory calculations using the yambo code
,”
J. Phys.: Condens. Matter.
31
,
325902
(
2019
).
60.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
61.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
62.
J.
Kohanoff
,
Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods
(
Cambridge University Press
,
2006
).
63.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
64.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
); arXiv:1201.3679.
65.
C. A.
Ullrich
,
Time-Dependent Density Functional Theory: Concepts and Applications
(
Oxford University Press
,
2011
).
66.
N. T.
Maitra
, “
Perspective: Fundamental aspects of time-dependent density functional theory
,”
J. Chem. Phys.
144
,
220901
(
2016
).
67.
A.
Schleife
,
E. W.
Draeger
,
Y.
Kanai
, and
A. A.
Correa
, “
Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn–Sham equations in large-scale simulations
,”
J. Chem. Phys.
137
,
22A546
(
2012
).
68.
A.
Castro
,
M. A. L.
Marques
, and
A.
Rubio
, “
Propagators for the time-dependent Kohn–Sham equations
,”
J. Chem. Phys.
121
,
3425
3433
(
2004
).
69.
S.
Andermatt
,
J.
Cha
,
F.
Schiffmann
, and
J.
Vandevondele
, “
Combining linear-scaling DFT with subsystem DFT in Born-Oppenheimer and Ehrenfest molecular dynamics simulations: From molecules to a virus in solution
,”
J. Chem. Theory Comput.
12
,
3214
3227
(
2016
).
70.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
Vandevondele
, “
CP2K: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
71.
A.
Tsolakidis
,
D.
Sánchez-Portal
, and
R. M.
Martin
, “
Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals
,”
Phys. Rev. B
66
,
235416
(
2002
).
72.
E.
Artacho
and
D. D.
O’Regan
, “
Quantum mechanics in an evolving Hilbert space
,”
Phys. Rev. B
95
,
115155
(
2017
).
73.
E. W.
Draeger
,
X.
Andrade
,
J. A.
Gunnels
,
A.
Bhatele
,
A.
Schleife
, and
A. A.
Correa
, “
Massively parallel first-principles simulation of electron dynamics in materials
,”
J. Parallel Distrib. Comput.
106
,
205
214
(
2017
).
74.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter.
14
,
2745
2779
(
2002
).
75.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
, “
MOLGW 1: Many-body perturbation theory software for atoms, molecules, and clusters
,”
Comput. Phys. Commun.
208
,
149
161
(
2016
).
76.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
77.
J. J.
Dorado
and
F.
Flores
, “
Molecular-orbital theory for the stopping power of atoms in the low-velocity regime: The case of helium in alkali metals
,”
Phys. Rev. A
47
,
3062
3072
(
1993
).
78.
M. A.
Zeb
,
J.
Kohanoff
,
D.
Sánchez-Portal
,
A.
Arnau
,
J. I.
Juaristi
, and
E.
Artacho
, “
Electronic stopping power in gold: The role of d electrons and the H/He anomaly
,”
Phys. Rev. Lett.
108
,
225504
(
2012
).
79.
A.
Lim
,
W. M. C.
Foulkes
,
A. P.
Horsfield
,
D. R.
Mason
,
A.
Schleife
,
E. W.
Draeger
, and
A. A.
Correa
, “
Electron elevator: Excitations across the band gap via a dynamical gap state
,”
Phys. Rev. Lett.
116
,
043201
(
2016
).
80.
C. P.
Race
,
D. R.
Mason
,
M. H. F.
Foo
,
W. M. C.
Foulkes
,
A. P.
Horsfield
, and
A. P.
Sutton
, “
Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals
,”
J. Phys.: Condens. Matter.
25
,
125501
(
2013
).
81.
F.
Martin
and
H.
Zipse
, “
Charge distribution in the water molecule–A comparison of methods
,”
J. Comput. Chem.
26
,
97
105
(
2005
).
82.
ICRU Report 49, stopping power and ranges for protons and alpha particles, https://icru.org/home/reports/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49,
1993
.
83.
I.
Maliyov
,
J.-P.
Crocombette
, and
F.
Bruneval
, “
Quantitative electronic stopping power from localized basis set
,”
Phys. Rev. B
101
,
035136
(
2020
).
84.
S. P. A.
Sauer
,
J. R.
Sabin
, and
J.
Oddershede
, “
Test of the validity of Bragg’s rule for mean excitation energies of small molecules and ions
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
444
,
112
116
(
2019
).
85.
E. E.
Quashie
,
R.
Ullah
,
X.
Andrade
, and
A. A.
Correa
, “
Effect of chemical disorder on the electronic stopping of solid solution alloys
,”
Acta Mater.
(published online).
86.
P.
Sigmund
and
A.
Schinner
, “
Electronic stopping in oxides beyond Bragg additivity
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
415
,
110
116
(
2018
).
87.
D.
Roth
,
B.
Bruckner
,
G.
Undeutsch
,
V.
Paneta
,
A. I.
Mardare
,
C. L.
McGahan
,
M.
Dosmailov
,
J. I.
Juaristi
,
M.
Alducin
,
J. D.
Pedarnig
,
R. F.
Haglund
,
D.
Primetzhofer
, and
P.
Bauer
, “
Electronic stopping of slow protons in oxides: Scaling properties
,”
Phys. Rev. Lett.
119
,
163401
(
2017
).
88.
P.
Sigmund
and
A.
Schinner
, “
Binary theory of electronic stopping
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
195
,
64
90
(
2002
).

Supplementary Material

You do not currently have access to this content.