Solvent-implicit Monte Carlo (MC) simulations and mean-field theory are used to predict activity coefficients and excess interfacial tensions for NaF, NaCl, NaI, KF, KCl, and KI solutions in good agreement with experimental data over the entire experimentally available concentration range. The effective ionic diameters of the solvent-implicit simulation model are obtained by fits to experimental activity coefficient data. The experimental activity coefficients at high salt concentrations are only reproduced if the ion-specific concentration-dependent decrement of the dielectric constant is included. The dielectric-constant dependent contribution of the single-ion solvation free energy to the activity coefficient is significant and is included. To account for the ion-specific excess interfacial tension of salt solutions, in addition to non-ideal solution effects and the salt-concentration-dependent dielectric decrement, an ion-specific ion–interface interaction must be included. This ion–interface interaction, which acts in addition to the dielectric image-charge repulsion, is modeled as a box potential, is considerably more long-ranged than the ion radius, and is repulsive for all ions considered except iodide, in agreement with previous findings and arguments. By comparing different models that include or exclude bulk non-ideal solution behavior, dielectric decrement effects, and ion–interface interaction potentials, we demonstrate how bulk and interfacial ion-specific effects couple and partially compensate each other. Our MC simulations, which correctly include ionic correlations and interfacial dielectric image-charge repulsion, are used to determine effective ion–surface interaction potentials that can be used in a modified Poisson–Boltzmann theory.

1.
A.
Heydweiller
,
Ann. Phys.
338
,
145
(
1910
).
2.
G.
Jones
and
W. A.
Ray
,
J. Am. Chem. Soc.
59
,
187
(
1937
).
3.
N. L.
Jarvis
and
M. A.
Scheiman
,
J. Phys. Chem.
72
,
74
(
1968
).
4.
P. K.
Weissenborn
and
R. J.
Pugh
,
J. Colloid Interface Sci.
184
,
550
(
1996
).
5.
N.
Matubayasi
,
K.
Tsunetomo
,
I.
Sato
,
R.
Akizuki
,
T.
Morishita
,
A.
Matuzawa
, and
Y.
Natsukari
,
J. Colloid Interface Sci.
243
,
444
(
2001
).
6.
N.
Matubayasi
,
K.
Yamamoto
,
S.-i.
Yamaguchi
,
H.
Matsuo
, and
N.
Ikeda
,
J. Colloid Interface Sci.
214
,
101
105
(
1999
).
7.
W.
Kunz
,
L.
Belloni
,
O.
Bernard
, and
B. W.
Ninham
,
J. Phys. Chem. B
108
,
2398
(
2004
).
8.
T.
López-León
,
A. B.
Jódar-Reyes
,
D.
Bastos-González
, and
J. L.
Ortega-Vinuesa
,
J. Phys. Chem. B
107
,
5696
(
2003
).
9.
T.
López-León
,
M. J.
Santander-Ortega
,
J. L.
Ortega-Vinuesa
, and
D.
Bastos-González
,
J. Phys. Chem. C
112
,
16060
(
2008
).
10.
J. M.
Peula-García
,
J. L.
Ortega-Vinuesa
, and
D.
Bastos-González
,
J. Phys. Chem. C
114
,
11133
(
2010
).
11.
A. P.
dos Santos
and
Y.
Levin
,
Phys. Rev. Lett.
106
,
167801
(
2011
).
12.
A. P.
dos Santos
,
W.
Figueiredo
, and
Y.
Levin
,
Langmuir
30
,
4593
(
2014
).
13.
N.
Jiang
,
P.
Li
,
Y.
Wang
,
J.
Wang
,
H.
Yan
, and
R. K.
Thomas
,
J. Phys. Chem. B
108
,
15385
(
2004
).
14.
15.
J.
Luczak
,
M.
Markiewicz
,
J.
Thöming
,
J.
Hupka
, and
C.
Jungnickel
,
J. Colloid Interface Sci.
362
,
415
(
2011
).
16.
W.
Müller
,
C.
Déjugnat
,
T.
Zemb
,
J.-F.
Dufrêche
, and
O.
Diat
,
J. Phys. Chem. B
117
,
1345
(
2013
).
17.
J.
Morag
,
M.
Dishon
, and
U.
Sivan
,
Langmuir
29
,
6317
(
2013
).
18.
T.
Oncsik
,
G.
Trefalt
,
M.
Borkovec
, and
I.
Szilagyi
,
Langmuir
31
,
3799
(
2015
).
19.
Y.
von Hansen
,
I.
Kalcher
, and
J.
Dzubiella
,
J. Phys. Chem. B
114
,
13815
(
2010
).
20.
H. I.
Okur
,
J.
Hladílková
,
K. B.
Rembert
,
Y.
Cho
,
J.
Heyda
,
J.
Dzubiella
,
P. S.
Cremer
, and
P.
Jungwirth
,
J. Phys. Chem. B
121
,
1997
(
2017
).
21.
J.
Lyklema
,
Chem. Phys. Lett.
467
,
217
(
2009
).
22.
W.
Kunz
,
Curr. Opin. Colloid Interface Sci.
15
,
34
(
2010
).
23.
Y.
Zhang
and
P. S.
Cremer
,
Annu. Rev. Phys. Chem.
61
,
63
(
2010
).
24.
G.
Trefalt
,
T.
Palberg
, and
M.
Borkovec
,
Curr. Opin. Colloid Interface Sci.
27
,
9
(
2017
).
25.
M.
Boström
,
D. R. M.
Williams
, and
B. W.
Ninham
,
Langmuir
17
,
4475
(
2001
).
26.
L.
Perera
and
M. L.
Berkowitz
,
J. Chem. Phys.
95
,
1954
(
1991
).
27.
L. X.
Dang
and
D. E.
Smith
,
J. Chem. Phys.
99
,
6950
(
1993
).
28.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
105
,
10468
(
2001
).
29.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
106
,
6361
(
2002
).
30.
P.
Jungwirth
and
D. J.
Tobias
,
Chem. Rev.
106
,
1259
(
2006
).
31.
D.
Horinek
and
R. R.
Netz
,
Phys. Rev. Lett.
99
,
226104
(
2007
).
33.
Y.
Levin
,
A. P.
dos Santos
, and
A.
Diehl
,
Phys. Rev. Lett.
103
,
257802
(
2009
).
34.
D. J.
Tobias
,
A. C.
Stern
,
M. D.
Baer
,
Y.
Levin
, and
C. J.
Mundy
,
Annu. Rev. Phys. Chem.
64
,
339
(
2013
).
35.
Y.
Levin
and
A. P. dos
Santos
,
J. Phys.: Condens. Matter
26
,
203101
(
2014
).
36.
D.
Horinek
,
A.
Herz
,
L.
Vrbka
,
F.
Sedlmeier
,
S. I.
Mamatkulov
, and
R. R.
Netz
,
Chem. Phys. Lett.
479
,
173
(
2009
).
37.
N.
Schwierz
,
D.
Horinek
, and
R. R.
Netz
,
Langmuir
26
,
7370
(
2010
).
38.
S. I.
Mamatkulov
,
C.
Allolio
,
R. R.
Netz
, and
D. J.
Bonthuis
,
Angew. Chem., Int. Ed.
56
,
15846
(
2017
).
39.
K. S.
Pitzer
,
J. Phys. Chem.
77
,
268
(
1973
).
40.
K. S.
Pitzer
and
G.
Mayorga
,
J. Phys. Chem.
77
,
2300
2308
(
1973
).
41.
E.
Moggia
and
B.
Bianco
,
J. Phys. Chem. B
111
,
3183
(
2007
).
42.
C.
Held
,
L. F.
Cameretti
, and
G.
Sadowski
,
Fluid Phase Equilib.
270
,
87
(
2008
).
43.
D.
Fraenkel
,
J. Chem. Theory Comput.
11
,
178
(
2015
).
45.
H. R.
Corti
,
J. Phys. Chem.
91
,
686
(
1987
).
46.
T. S.
Sorensen
,
J. B.
Jensen
, and
P.
Sloth
,
J. Chem. Soc., Faraday Trans. 1
85
,
2649
(
1989
).
47.
J. B.
Hasted
,
D. M.
Ritson
, and
C. H.
Collie
,
J. Chem. Phys.
16
,
1
(
1948
).
48.
W. R.
Fawcett
and
A. C.
Tikanen
,
J. Phys. Chem.
100
,
4251
(
1996
).
49.
J.-P.
Simonin
,
L.
Blum
, and
P.
Turq
,
J. Phys. Chem.
100
,
7704
(
1996
).
50.
J.-P.
Simonin
,
J. Phys. Chem. B
101
,
4313
(
1997
).
51.
I.
Kalcher
and
J.
Dzubiella
,
J. Chem. Phys.
130
,
134507
(
2009
).
52.
J.
Vincze
,
M.
Valiskó
, and
D.
Boda
,
J. Chem. Phys.
133
,
154507
(
2010
).
53.
M.
Valiskó
and
D.
Boda
,
J. Chem. Phys.
140
,
234508
(
2014
).
54.
A.
Levy
,
M.
Bazant
, and
A.
Kornyshev
,
Chem. Phys. Lett.
738
,
136915
(
2020
).
55.
A.
Levy
and
D.
Andelman
,
Phys. Rev. Lett.
108
,
227801
(
2012
).
56.
N.
Gavish
and
K.
Promislow
,
Phys. Rev. E
94
,
012611
(
2016
).
57.
C.-H.
Ho
,
H.-K.
Tsao
, and
Y.-J.
Sheng
,
J. Chem. Phys.
119
,
2369
(
2003
).
58.
D.
Henderson
,
D.
Gillespie
,
T.
Nagy
, and
D.
Boda
,
Mol. Phys.
103
,
2851
(
2005
).
59.
A.
Diehl
,
A. P.
dos Santos
, and
Y.
Levin
,
J. Phys.: Condens. Matter
24
,
284115
(
2012
).
60.
L.
Onsager
and
N. N. T.
Samaras
,
J. Chem. Phys.
2
,
528
(
1934
).
61.
R. H.
Garrett
and
C. M.
Grisham
,
Biochemistry
(
Brooks/Cole
,
Boston
,
2010
).
62.
Y.
Marcus
,
J. Chem. Soc., Faraday Trans.
87
,
2995
(
1991
).
63.
P.
Loche
,
C.
Ayaz
,
A.
Schlaich
,
D. J.
Bonthuis
, and
R. R.
Netz
,
J. Phys. Chem. Lett.
9
,
6463
(
2018
).
64.
A.
Bakhshandeh
,
A. P.
dos Santos
,
A.
Diehl
, and
Y.
Levin
,
J. Chem. Phys.
142
,
194707
(
2015
).
65.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
66.
Y.
Uematsu
,
D. J.
Bonthuis
, and
R. R.
Netz
,
J. Phys. Chem. Lett.
9
,
189
(
2018
).
67.
D.
Boda
,
D.
Gillespie
,
W.
Nonner
,
D.
Henderson
, and
B.
Eisenberg
,
Phys. Rev. E
69
,
046702
(
2004
).
68.
S.
Tyagi
,
M.
Süzen
,
M.
Sega
,
M.
Barbosa
,
S. S.
Kantorovich
, and
C.
Holm
,
J. Chem. Phys.
132
,
154112
(
2010
).
69.
V.
Jadhao
,
F.
Solis
, and
M.
de la Cruz
,
Phys. Rev. Lett.
109
,
223905
(
2012
).
70.
J. W.
Zwanikken
and
M.
Olvera de la Cruz
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
5301
(
2013
).
71.
Z.
Gan
,
H.
Wu
,
K.
Barros
,
Z.
Xu
, and
E.
Luijten
,
J. Comput. Phys.
291
,
317
(
2015
).
72.
A. P.
dos Santos
,
M.
Girotto
, and
Y.
Levin
,
J. Chem. Phys.
147
,
184105
(
2017
).
73.
A. P.
dos Santos
and
Y.
Levin
,
J. Chem. Phys.
142
,
194104
(
2015
).
74.
A. P.
dos Santos
,
M.
Girotto
, and
Y.
Levin
,
J. Phys. Chem. B
120
,
10387
(
2016
).
75.
P. W.
Debye
and
E.
Hückel
,
Phys. Z
24
,
185
(
1923
).
76.
77.
R.
Buchner
,
G. T.
Hefter
, and
J.
Barthel
,
J. Chem. Soc., Faraday Trans.
90
,
2475
(
1994
).
78.
R.
Buchner
,
G. T.
Hefter
, and
P. M.
Ma
,
J. Phys. Chem. A
103
,
1
(
1999
).
79.
J.
Barthel
,
J.
Krüger
, and
E.
Schollmeyer
,
Z. Phys. Chem.
104
,
59
(
1977
).
80.
A. V.
Kobelev
,
A. S.
Lileev
, and
A. K.
Lyashchenko
,
Russ. J. Inorg. Chem.
56
,
652
(
2011
).
81.
E.
Glueckauf
,
Trans. Faraday Soc.
60
,
1637
(
1964
).
82.
A.
Chandra
,
J. Chem. Phys.
113
,
903
(
2000
).
83.
W. J.
Hamer
and
Y. C.
Wu
,
J. Phys. Chem. Ref. Data
1
,
1047
(
1972
).
84.
M. T.
Zafarani-Moattar
and
F.
Izadi
,
J. Chem. Thermodyn.
43
,
552
(
2011
).
85.
P. S. Z.
Rogers
and
K. S.
Pitzer
,
J. Phys. Chem. Ref. Data
11
,
15
(
1982
).
86.
V.
Balos
,
M.
Bonn
, and
J.
Hunger
,
Phys. Chem. Chem. Phys.
19
,
9724
(
2017
).
87.
N.
Schwierz
,
D.
Horinek
,
U.
Sivan
, and
R. R.
Netz
,
Curr. Opin. Colloid Interface Sci.
23
,
10
(
2016
).
88.
J. M.
Barthel
,
H.
Krienke
, and
W.
Kunz
,
Physical Chemistry of Electrolyte Solutions: Modern Aspects
(
Springer
,
New York
,
1998
).
89.
K.
Ali
,
A. A.
Shah
,
S.
Bilal
, and
A. A.
Shah
,
Colloids Surf., A
337
,
194
(
2009
).
90.
L.
Piatkowski
,
Z.
Zhang
,
E. H.
Backus
,
H. J.
Bakker
, and
M.
Bonn
,
Nat. Commun.
5
,
4083
(
2014
).
91.
T.
Markovich
,
D.
Andelman
, and
R.
Podgornik
,
J. Chem. Phys.
142
,
044702
(
2015
).
92.
D. E.
Smith
and
L. X.
Dang
,
J. Chem. Phys.
100
,
3757
(
1994
).
You do not currently have access to this content.