Over the last decades, photoreceptive proteins were extensively studied with biophysical methods to gain a fundamental understanding of their working mechanisms and further guide the development of optogenetic tools. Time-resolved infrared (IR) spectroscopy is one of the key methods to access their functional non-equilibrium processes with high temporal resolution but has the major drawback that experimental data are usually highly complex. Linking the spectral response to specific molecular events is a major obstacle. Here, we investigate a cyanobacteriochrome photoreceptor with a combined approach of transient absorption spectroscopy in the visible and IR spectral regions. We obtain kinetic information in both spectral regions by analysis with two different fitting methods: global multiexponential fitting and lifetime analysis. We investigate the ground state dynamics that follow photoexcitation in both directions of the bi-stable photocycle (Pr* and Pg*) in the nanosecond and microsecond time regimes. We find two ground state intermediates associated with the decay of Pr* and four with Pg* and report the macroscopic time constants of their interconversions. One of these processes is assigned to a structural change in the protein backbone.

1.
N. C.
Rockwell
and
J. C.
Lagarias
,
ChemPhysChem
11
,
1172
(
2010
).
2.
N. C.
Rockwell
and
J. C.
Lagarias
,
Curr. Opin. Plant Biol.
37
,
87
(
2017
).
3.
K.
Fushimi
and
R.
Narikawa
,
Curr. Opin. Struct. Biol.
57
,
39
(
2019
).
4.
M.
Blain-Hartung
 et al,
J. Biol. Chem.
293
,
8473
(
2018
).
5.
P.-P.
Hu
,
R.
Guo
,
M.
Zhou
,
W.
Gärtner
, and
K.-H.
Zhao
,
ChemBioChem
19
,
1887
(
2018
).
6.
J.
Jang
,
S.
McDonald
,
M.
Uppalapati
, and
A.
Woolley
,
Synth. Biol.
2019
, 1; available at https://www.biorxiv.org/content/10.1101/769422v1.
7.
N. T.
Ong
and
J. J.
Tabor
,
ChemBioChem
19
,
1255
(
2018
).
8.
S. M.
Castillo-Hair
,
E. A.
Baerman
,
M.
Fujita
,
O. A.
Igoshin
, and
J. J.
Tabor
,
Nat. Commun.
10
,
3099
(
2019
).
9.
O. S.
Oliinyk
,
A. A.
Shemetov
,
S.
Pletnev
,
D. M.
Shcherbakova
, and
V. V.
Verkhusha
,
Nat. Commun.
10
,
279
(
2019
).
10.
R.
Narikawa
 et al,
Proc. Natl. Acad. Sci. U. S. A.
110
,
918
(
2013
).
11.
E. S.
Burgie
,
J. M.
Walker
,
G. N.
Phillips
, and
R. D.
Vierstra
,
Structure
21
,
88
(
2013
).
12.
S.
Lim
 et al,
Proc. Natl. Acad. Sci. U. S. A.
115
,
4387
(
2018
).
13.
C.
Slavov
,
X.
Xu
,
K.-h.
Zhao
,
W.
Gärtner
, and
J.
Wachtveitl
,
Biochim. Biophys. Acta, Bioenergy
1847
,
1335
(
2015
).
14.
Y.
Fukushima
 et al,
Biochemistry
50
,
6328
(
2011
).
15.
S. J. O.
Hardman
,
A. F. E.
Hauck
,
I. P.
Clark
,
D. J.
Heyes
, and
N. S.
Scrutton
,
Biophys. J.
107
,
2195
(
2014
).
16.
A. F. E.
Hauck
 et al,
J. Biol. Chem.
289
,
17747
(
2014
).
17.
U.
Choudry
 et al,
ChemBioChem
19
,
1036
(
2018
).
18.
V. A.
Lorenz-Fonfria
,
Chem. Rev.
120
,
3466
3576
(
2020
).
19.
S. J. O.
Hardman
,
D. J.
Heyes
,
I. V.
Sazanovich
, and
N. S.
Scrutton
,
Biochemistry
59
,
2909
(
2020
).
20.
X. L.
Xu
 et al,
ChemBioChem
15
,
1190
(
2014
).
21.
X.
Xu
 et al,
Proc. Natl. Acad. Sci. U. S. A.
117
,
2432
(
2020
).
22.
C.
Wiebeler
,
A.
Gopalakrishna Rao
,
W.
Gärtner
, and
I.
Schapiro
,
Angew. Chem., Int. Ed.
58
,
1934
(
2018
).
23.
C.
Wiebeler
and
I.
Schapiro
,
Molecules
24
,
1720
(
2019
).
24.
D.
Buhrke
 et al,
Biochemistry
59
,
509
(
2020
).
25.
J.
Bredenbeck
,
J.
Helbing
, and
P.
Hamm
,
Rev. Sci. Instrum.
75
,
4462
(
2004
).
26.
Y.
Feng
,
I.
Vinogradov
, and
N.-H.
Ge
,
Opt. Express
25
,
26262
(
2017
).
27.
P.
Hamm
,
R. A.
Kaindl
, and
J.
Stenger
,
Opt. Lett.
25
,
1798
(
2000
).
28.
M. P.
Hobson
and
A. N.
Lasenby
,
Mon. Not. R. Astron. Soc.
298
,
905
(
1998
).
29.
A. T. N.
Kumar
,
L.
Zhu
,
J. F.
Christian
,
A. A.
Demidov
, and
P. M.
Champion
,
J. Phys. Chem. B
105
,
7847
(
2001
).
30.
V. A.
Lórenz-Fonfría
and
H.
Kandori
,
Appl. Spectrosc.
60
,
407
(
2006
).
31.
V. A.
Lórenz-Fonfría
and
H.
Kandori
,
Appl. Spectrosc.
61
,
74
(
2007
).
32.
V. A.
Lórenz-Fonfría
 et al,
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5796
(
2015
).
33.
C.
Slavov
,
H.
Hartmann
, and
J.
Wachtveitl
,
Anal. Chem.
87
,
2328
(
2015
).
34.
G. F.
Dorlhiac
,
C.
Fare
, and
J. J.
van Thor
,
PLoS Comput. Biol.
13
,
e1005528
(
2017
).
35.
G.
Stock
and
P.
Hamm
,
Philos. Trans. R. Soc., B
373
,
20170187
(
2018
).
36.
O.
Bozovic
 et al,
Proc. Natl. Acad. Sci. U. S. A.
117
,
26031
(
2020
).
37.
Wolfram Research, Inc., Mathematica, version 12, Champaign, IL, 2020.
38.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
(
Cambridge University Press
,
Cambridge
,
1992
).
39.
J. S.
Beckwith
,
C. A.
Rumble
, and
E.
Vauthey
,
Int. Rev. Phys. Chem.
39
,
135
(
2018
).
40.
I. H. M.
Van Stokkum
,
D. S.
Larsen
, and
R.
Van Grondelle
,
Biochim. Biophys. Acta Bioenergy
1657
,
82
(
2004
).
41.
P. W.
Kim
 et al,
Biochemistry
51
,
608
(
2012
).
42.
S. M.
Gottlieb
 et al,
Biochemistry
54
,
1028
(
2015
).
43.
J. S.
Kirpich
 et al,
Biochemistry
58
,
2297
(
2019
).
44.
A. J.
Jenkins
 et al,
Photochem. Photobiol. Sci.
18
,
2539
(
2019
).
45.
J. J.
van Thor
,
K. L.
Ronayne
, and
M.
Towrie
,
J. Am. Chem. Soc.
129
,
126
(
2007
).
46.
C.
Song
 et al,
Biochemistry
54
,
5839
(
2015
).
47.
K. C.
Toh
,
E. A.
Stojkovic
,
I. H. M.
van Stokkum
,
K.
Moffat
, and
J. T. M.
Kennis
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
9170
(
2010
).
48.
Y.
Hontani
 et al,
Sci. Rep.
6
,
37362
(
2016
).
49.
P. W.
Kim
 et al,
Biochemistry
51
,
619
(
2012
).
50.
J. S.
Kirpich
 et al,
Biochemistry
58
,
2307
(
2019
).
51.
F.
Pennacchietti
 et al,
Photochem. Photobiol. Sci.
14
,
229
(
2015
).
52.
P.
Eilfeld
and
W.
Rüdiger
,
Z. Naturforsch., C: J. Biosci.
40
,
109
(
1985
).
53.
J.
Kuebel
 et al,
Phys. Chem. Chem. Phys.
22
,
9195
(
2020
).
54.
F.
Velázquez Escobar
 et al,
Nat. Chem.
7
,
423
(
2015
).
55.
A.
Schmidt
 et al,
Nat. Commun.
9
,
4912
(
2018
).
56.
D.
Buhrke
 et al,
J. Biol. Chem.
295
,
539
(
2020
).
57.
H.
Takala
 et al,
J. Biol. Chem.
293
,
8161
(
2018
).
58.
D.
Buhrke
,
U.
Kuhlmann
,
N.
Michael
, and
P.
Hildebrandt
,
ChemPhysChem
19
,
566
(
2018
).
59.
G.
Gourinchas
,
S.
Etzl
, and
A.
Winkler
,
Curr. Opin. Struct. Biol.
57
,
72
(
2019
).
60.
J. N.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
61.
K. A.
Dill
,
S. B.
Ozkan
,
M. S.
Shell
, and
T. R.
Weikl
,
Annu. Rev. Biophys.
37
,
289
(
2008
).
62.
S.
Osváth
,
J. J.
Sabelko
, and
M.
Gruebele
,
J. Mol. Biol.
333
,
187
(
2003
).
63.
See for the data that supports the findings of this study.

Supplementary Material

You do not currently have access to this content.