Metal alloys are ubiquitous in many branches of heterogeneous catalysis, and it is now fairly well established that the local atomic structure of an alloy can have a profound influence on its chemical reactivity. While these effects can be difficult to probe in nanoparticle catalysts, model studies using well defined single crystal surfaces alloyed with dopants enable these structure–function correlations to be drawn. The first step in this approach involves understanding the alloying mechanism and the type of ensembles formed. In this study, we examined the atomic structure of RhCu single-atom alloys formed on Cu(111), Cu(100), and Cu(110) surfaces. Our results show a striking difference between Rh atoms alloying in Cu(111) vs the more open Cu(100) and Cu(110) surface facets. Unlike Cu(111) on which Rh atoms preferentially place-exchange with Cu atoms in the local regions above step edges leaving the majority of the Cu surface free of Rh, highly dispersed, homogeneous alloys are formed on the Cu(100) and (110) surfaces. These dramatically different alloying mechanisms are understood by quantifying the energetic barriers for atomic hopping, exchange, swapping, and vacancy filling events for Rh atoms on different Cu surfaces through theoretical calculations. Density functional theory results indicate that the observed differences in the alloying mechanism can be attributed to a faster hopping rate, relatively high atomic exchange barriers, and stronger binding of Rh atoms in the vicinity of step edges on Cu(111) compared to Cu(110) and Cu(100). These model systems will serve as useful platforms for examining structure sensitive chemistry on single-atom alloys.

1.
G.
Kyriakou
,
M. B.
Boucher
,
A. D.
Jewell
,
E. A.
Lewis
,
T. J.
Lawton
,
A. E.
Baber
,
H. L.
Tierney
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Science
335
,
1209
(
2012
).
2.
F. R.
Lucci
,
J.
Liu
,
M. D.
Marcinkowski
,
M.
Yang
,
L. F.
Allard
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Nat. Commun.
6
,
8550
(
2015
).
3.
G.
Sun
,
Z. J.
Zhao
,
R.
Mu
,
S.
Zha
,
L.
Li
,
S.
Chen
,
K.
Zang
,
J.
Luo
,
Z.
Li
,
S. C.
Purdy
,
A. J.
Kropf
,
J. T.
Miller
,
L.
Zeng
, and
J.
Gong
,
Nat. Commun.
9
,
4454
(
2018
).
4.
F.
Xing
,
J.
Jeon
,
T.
Toyao
,
K.-I.
Shimizu
, and
S.
Furukawa
,
Chem. Sci.
10
,
8292
(
2019
).
5.
M.
Luneau
,
T.
Shirman
,
A. C.
Foucher
,
K.
Duanmu
,
D. M. A.
Verbart
,
P.
Sautet
,
E. A.
Stach
,
J.
Aizenberg
,
R. J.
Madix
, and
C. M.
Friend
,
ACS Catal.
10
,
441
(
2020
).
6.
H.
Li
,
K.
Shin
, and
G.
Henkelman
,
J. Chem. Phys.
149
,
174705
(
2018
).
7.
M. T.
Darby
,
R.
Réocreux
,
E. C. H.
Sykes
,
A.
Michaelides
, and
M.
Stamatakis
,
ACS Catal.
8
,
5038
(
2018
).
8.
K. K.
Rao
,
Q. K.
Do
,
K.
Pham
,
D.
Maiti
, and
L. C.
Grabow
,
Top. Catal.
63
,
728
(
2020
).
9.
J.
Liu
,
F. R.
Lucci
,
M.
Yang
,
S.
Lee
,
M. D.
Marcinkowski
,
A. J.
Therrien
,
C. T.
Williams
,
E. C. H.
Sykes
, and
M.
Flytzani-Stephanopoulos
,
J. Am. Chem. Soc.
138
,
6396
(
2016
).
10.
M. B.
Boucher
,
B.
Zugic
,
G.
Cladaras
,
J.
Kammert
,
M. D.
Marcinkowski
,
T. J.
Lawton
,
E. C. H.
Sykes
, and
M.
Flytzani-Stephanopoulos
,
Phys. Chem. Chem. Phys.
15
,
12187
(
2013
).
11.
M. D.
Marcinkowski
,
M. T.
Darby
,
J.
Liu
,
J. M.
Wimble
,
F. R.
Lucci
,
S.
Lee
,
A.
Michaelides
,
M.
Flytzani-Stephanopoulos
,
M.
Stamatakis
, and
E. C. H.
Sykes
,
Nat. Chem.
10
,
325
(
2018
).
12.
M. D.
Marcinkowski
,
A. D.
Jewell
,
M.
Stamatakis
,
M. B.
Boucher
,
E. A.
Lewis
,
C. J.
Murphy
,
G.
Kyriakou
, and
E. C. H.
Sykes
,
Nat. Mater.
12
,
523
(
2013
).
13.
M. T.
Greiner
,
T. E.
Jones
,
S.
Beeg
,
L.
Zwiener
,
M.
Scherzer
,
F.
Girgsdies
,
S.
Piccinin
,
M.
Armbrüster
,
A.
Knop-Gericke
, and
R.
Schlögl
,
Nat. Chem.
10
,
1008
(
2018
).
14.
B.
Seemala
,
C. M.
Cai
,
C. E.
Wyman
, and
P.
Christopher
,
ACS Catal.
7
,
4070
(
2017
).
15.
L.
Zhou
,
J. M. P.
Martirez
,
J.
Finzel
,
C.
Zhang
,
D. F.
Swearer
,
S.
Tian
,
H.
Robatjazi
,
M.
Lou
,
L.
Dong
,
L.
Henderson
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nat. Energy
5
,
61
(
2020
).
16.
G. X.
Pei
,
X. Y.
Liu
,
X.
Yang
,
L.
Zhang
,
A.
Wang
,
L.
Li
,
H.
Wang
,
X.
Wang
, and
T.
Zhang
,
ACS Catal.
7
,
1491
(
2017
).
17.
M. T.
Darby
,
E. C. H.
Sykes
,
A.
Michaelides
, and
M.
Stamatakis
,
Top. Catal.
61
,
428
(
2018
).
18.
R. T.
Hannagan
,
G.
Giannakakis
,
M.
Flytzani-Stephanopoulos
, and
E. C. H.
Sykes
,
Chem. Rev.
120
,
12044
(
2020
).
19.
F. R.
Lucci
,
T. J.
Lawton
,
A.
Pronschinske
, and
E. C. H.
Sykes
,
J. Phys. Chem. C
118
,
3015
(
2014
).
20.
J.
Liu
,
M. B.
Uhlman
,
M. M.
Montemore
,
A.
Trimpalis
,
G.
Giannakakis
,
J.
Shan
,
S.
Cao
,
R. T.
Hannagan
,
E. C. H.
Sykes
, and
M.
Flytzani-Stephanopoulos
,
ACS Catal.
9
,
8757
(
2019
).
21.
Z.-T.
Wang
,
M. T.
Darby
,
A. J.
Therrien
,
M.
El-Soda
,
A.
Michaelides
,
M.
Stamatakis
, and
E. C. H.
Sykes
,
J. Phys. Chem. C
120
,
13574
(
2016
).
22.
M.
Muir
and
M.
Trenary
,
J. Phys. Chem. C
124
,
14722
(
2020
).
23.
D. A.
Patel
,
P. L.
Kress
,
L. A.
Cramer
,
A. M.
Larson
, and
E. C. H.
Sykes
,
J. Chem. Phys.
151
,
164705
(
2019
).
24.
D. A.
Patel
,
R. T.
Hannagan
,
P. L.
Kress
,
A. C.
Schilling
,
V.
Ç
nar
ı, and
E. C. H.
Sykes
,
J. Phys. Chem. C
123
,
28142
(
2019
).
25.
R. T.
Hannagan
,
D. A.
Patel
,
L. A.
Cramer
,
A. C.
Schilling
,
P. T. P.
Ryan
,
A. M.
Larson
,
V.
Ç
nar
ı,
Y.
Wang
,
T. A.
Balema
, and
E. C. H.
Sykes
,
ChemCatChem
12
,
488
(
2019
).
26.
F.
Bozso
,
G.
Ertl
, and
M.
Weiss
,
J. Catal.
50
,
519
(
1977
).
27.
G.
Ertl
,
Angew. Chem., Int. Ed.
47
,
3524
(
2008
).
28.
C. J.
Jenks
,
B. E.
Bent
,
N.
Bernstein
, and
F.
Zaera
,
J. Phys. Chem. B
104
,
3008
(
2002
).
29.
Y.
Gao
,
L.
Shi
,
S.
Li
, and
Q.
Ren
,
Phys. Chem. Chem. Phys.
22
,
5070
(
2020
).
30.
L.
Jiang
,
K.
Liu
,
S.
Hung
,
L.
Zhou
,
R.
Qin
,
Q.
Zhang
,
P.
Liu
,
L.
Gu
,
H. M.
Chen
,
G.
Fu
, and
N.
Zheng
,
Nat. Nanotechnol.
15
,
848
(
2020
).
31.
K. G.
Papanikolaou
,
M. T.
Darby
, and
M.
Stamatakis
,
J. Phys. Chem. C
123
,
9128
(
2019
).
32.
K. G.
Papanikolaou
and
M.
Stamatakis
,
Catal. Sci. Technol.
10
,
5815
(
2020
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
34.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
35.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
P.
Haas
,
F.
Tran
, and
P.
Blaha
,
Phys. Rev. B
79
,
085104
(
2009
).
38.
K.-M.
Ho
and
K. P.
Bohnen
,
Phys. Rev. Lett.
59
,
1833
(
1987
).
39.
E. C.
Sowa
,
M. A.
Van Hove
, and
D. L.
Adams
,
Surf. Sci.
199
,
174
(
1988
).
40.
I.
Matrane
,
M.
Mazroui
,
R.
Ferrando
,
M.
Badawi
, and
S.
Lebègue
,
Surf. Sci.
690
,
121463
(
2019
).
41.
J.-M.
Zhang
,
H.-Y.
Li
, and
K.-W.
Xu
,
Surf. Interface Anal.
39
,
660
(
2007
).
42.
J. D.
Pack
and
H. J.
Monkhorst
,
Phys. Rev. B
16
,
1748
(
1977
).
43.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
44.
M. T.
Darby
,
M.
Stamatakis
,
A.
Michaelides
, and
E. C. H.
Sykes
, “
Lonely atoms with special gifts: Breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys
,”
J. Phys. Chem. Lett.
9
,
5636
5646
(
2018
).
45.
F.
Montalenti
and
R.
Ferrando
,
Phys. Rev. B
59
,
5881
(
1999
).
46.
47.
M.
Villarba
and
H.
Jónsson
,
Phys. Rev. B
49
,
2208
(
1994
).
48.
J. D.
Wrigley
and
G.
Ehrlich
,
Phys. Rev. Lett.
44
,
661
(
1980
).
49.
B. D.
Yu
and
M.
Scheffler
,
Phys. Rev. B
56
,
R15569
(
1997
).
50.
P. J.
Feibelman
and
R.
Stumpf
,
Phys. Rev. B
59
,
5892
(
1999
).
51.
R. T.
Tung
and
W. R.
Graham
,
Surf. Sci.
97
,
73
(
1980
).
52.
P.
Wynblatt
and
N. A.
Gjostein
,
Surf. Sci.
12
,
109
(
1968
).
53.
P. J.
Feibelman
,
Phys. Rev. Lett.
65
,
729
(
1990
).
54.
D. W.
Bassett
and
P. R.
Webber
,
Surf. Sci.
70
,
520
(
1978
).
55.
M. L.
Anderson
,
M. J.
D’Amato
,
P. J.
Feibelman
, and
B. S.
Swartzentruber
,
Phys. Rev. Lett.
90
,
126102
(
2003
).
56.
L.
Hansen
,
P.
Stoltze
,
K. W.
Jacobsen
, and
J. K.
Nørskov
,
Phys. Rev. B
44
,
6523
(
1991
).
57.
H. Y.
Kim
and
G.
Henkelman
,
ACS Catal.
3
,
2541
(
2013
).
58.
B. P.
Uberuaga
,
G.
Henkelman
,
H.
Jónsson
,
S. T.
Dunham
,
W.
Windl
, and
R.
Stumpf
,
Phys. Status Solidi B
233
,
24
(
2002
).
59.
H.
Wang
,
M.
Stamatakis
,
D. A.
Hansgen
,
S.
Caratzoulas
, and
D. G.
Vlachos
,
J. Chem. Phys.
133
,
224503
(
2010
).
60.
K. G.
Papanikolaou
,
M. T.
Darby
, and
M.
Stamatakis
,
ACS Catal.
10
,
1224
(
2020
).
61.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).

Supplementary Material

You do not currently have access to this content.