Silver doping is a valuable route to modulate the structural, electronic, and optical properties of gold clusters. We combine photofragmentation experiments with density functional theory calculations to investigate the relative stability of cationic Ag doped Au clusters, AgAuN−1+ (N ≤ 40). The mass spectra of the clusters after photofragmentation reveal marked drops in the intensity of AgAu8+, AgAu14+, and AgAu34+, indicating a higher relative stability of these sizes. This is confirmed by the calculated AgAuN−1+ (N ≤ 17) dissociation energies peaking for AgAu6+, AgAu8+, and AgAu14+. While the stability of AgAu6+ and AgAu8+ can be explained by the accepted electronic shell model for metal clusters, density of states analysis shows that the geometry plays an important role in the higher relative stability of AgAu14+. For this size, there is a degeneracy lifting of the 1D shell, which opens a relatively large HOMO–LUMO gap with a subshell-closed 1S21P41P21D6 electronic configuration.

1.
A. P.
Woodham
,
G.
Meijer
, and
A.
Fielicke
,
Angew. Chem., Int. Ed.
51
,
4444
4447
(
2012
).
2.
Z.
Luo
,
G. U.
Gamboa
,
M.
Jia
,
A. C.
Reber
,
S. N.
Khanna
, and
A. W.
Castleman
,
J. Phys. Chem. A
118
,
8345
8350
(
2014
).
3.
K.
Ohshimo
,
K.
Akimoto
,
M.
Ogawa
,
W.
Iwasaki
,
H.
Yamamoto
,
M.
Tona
,
K.
Tsukamoto
,
M.
Nakano
, and
F.
Misaizu
,
J. Phys. Chem. A
122
,
2927
2932
(
2018
).
4.
A. N.
Gloess
,
H.
Schneider
,
J. M.
Weber
, and
M. M.
Kappes
,
J. Chem. Phys.
128
,
114312
(
2008
).
5.
A.
Shayeghi
,
D. A.
Götz
,
R. L.
Johnston
, and
R.
Schäfer
,
Eur. Phys. J. D
69
,
152
(
2015
).
6.
S.
Lecoultre
,
A.
Rydlo
,
C.
Félix
,
J.
Buttet
,
S.
Gilb
, and
W.
Harbich
,
J. Chem. Phys.
134
,
074303
(
2011
).
7.
J. A.
Alonso
,
Structure and Properties of Atomic Nanoclusters
(
Imperial College Press
,
London
,
2005
).
8.
H.
Häkkinen
,
Adv. Phys. X
1
,
467
491
(
2016
).
9.
P. W.
Atkins
and
R. S.
Friedman
,
Molecular Quantum Mechanics
(
Oxford University Press
,
New York
,
2011
).
10.
W. A.
de Heer
,
Rev. Mod. Phys.
65
,
611
(
1993
).
11.
H.
Tanaka
,
S.
Neukermans
,
E.
Janssens
,
R. E.
Silverans
, and
P.
Lievens
,
J. Am. Chem. Soc.
125
,
2862
2863
(
2003
).
12.
A. C.
Reber
and
S. N.
Khanna
,
Acc. Chem. Res.
50
,
255
263
(
2017
).
13.
P.
Ferrari
,
H. A.
Hussein
,
C. J.
Heard
,
J.
Vanbuel
,
P.
Lievens
,
R. L.
Johnston
, and
E.
Janssens
,
Phys. Rev. A
97
,
052508
(
2018
).
14.
E.
Janssens
,
S.
Neukermans
,
X.
Wang
,
N.
Veldeman
,
R. E.
Silverans
, and
P.
Lievens
,
Eur. Phys. J. D
34
,
23
27
(
2005
).
15.
E.
Janssens
,
H.
Tanaka
,
S.
Neukermans
,
R. E.
Silverans
, and
P.
Lievens
,
New J. Phys.
5
,
46
(
2003
).
16.
A. C.
Reber
,
G. U.
Gamboa
, and
S. N.
Khanna
,
J. Phys.: Conf. Ser.
438
,
012002
(
2013
).
17.
P.
Ferrari
,
J.
Vanbuel
,
E.
Janssens
, and
P.
Lievens
,
Acc. Chem. Res.
51
,
3174
3182
(
2018
).
18.
A.
Shayeghi
,
C. J.
Heard
,
R. L.
Johnston
, and
R.
Schäfer
,
J. Chem. Phys.
140
,
054312
(
2014
).
19.
A.
Shayeghi
,
R. L.
Johnston
,
D. M.
Rayner
,
R.
Schäfer
, and
A.
Fielicke
,
Angew. Chem., Int. Ed.
54
,
10675
10680
(
2015
).
20.
E.
Janssens
,
H.
Tanaka
,
S.
Neukermans
,
R. E.
Silverans
, and
P.
Lievens
,
Phys. Rev. B
69
,
085402
(
2004
).
21.
N.
Veldeman
,
E.
Janssens
,
K.
Hansen
,
J.
De Haeck
,
R. E.
Silverans
, and
P.
Lievens
,
Faraday Discuss.
138
,
147
162
(
2008
).
22.
S.
Neukermans
,
E.
Janssens
,
H.
Tanaka
,
R. E.
Silverans
, and
P.
Lievens
,
Phys. Rev. Lett.
90
,
033401
(
2003
).
23.
P.
Ferrari
and
E.
Janssens
,
Appl. Sci.
9
,
1666
(
2019
).
24.
V. M.
Medel
,
A. C.
Reber
,
V.
Chauhan
,
P.
Sen
,
A. M.
Köster
,
P.
Calaminici
, and
S. N.
Khanna
,
J. Am. Chem. Soc.
136
,
8229
8236
(
2014
).
25.
W. H.
Blades
,
A. C.
Reber
,
S. N.
Khanna
,
L.
López-Sosa
,
P.
Calaminici
, and
A. M.
Köster
,
J. Phys. Chem. A
121
,
2990
2999
(
2017
).
26.
L. C.
Balbás
and
J. L.
Martins
,
Phys. Rev. B
54
,
2937
(
1996
).
27.
E.
Janssens
,
S.
Neukermans
, and
P.
Lievens
,
Curr. Opin. Solid State Mater. Sci.
8
,
185
193
(
2004
).
28.
C.
Baladron
and
J. A.
Alonso
,
Physica B
154
,
73
(
1988
).
29.
D.
Die
,
B.-X.
Zheng
,
L.-Q.
Zhao
,
Q.-W.
Zhu
, and
Z.-Q.
Zhao
,
Sci. Rep.
6
,
31978
(
2016
).
30.
M.
Nakaya
,
T.
Iwasa
,
H.
Tsunoyama
,
T.
Eguchi
, and
A.
Nakajima
,
Nanoscale
6
,
14702
(
2014
).
31.
P. A.
Clayborne
and
H.
Häkkinen
,
Phys. Chem. Chem. Phys.
14
,
9311
(
2012
).
32.
S.
Neukermans
,
E.
Janssens
,
Z. F.
Chen
,
R. E.
Silverans
,
P. V. R.
Schleyer
, and
P.
Lievens
,
Phys. Rev. Lett.
92
,
163401
(
2004
).
33.
V.
Chauhan
and
P.
Sen
,
Chem. Phys.
417
,
37
(
2013
).
34.
J.
Zhao
,
Q.
Du
,
S.
Zhou
, and
V.
Kumar
,
Chem. Rev.
120
,
9021
(
2020
).
35.
H. T.
Pham
,
N. T.
Cuong
,
N. M.
Tam
, and
N. T.
Tung
,
J. Phys. Chem. A
120
,
7335
(
2016
).
36.
V. M.
Medel
,
J. U.
Reveles
,
S. N.
Khanna
,
V.
Chauhan
,
P.
Sen
, and
A. W.
Castleman
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
10062
(
2011
).
37.
J.
De Haeck
,
N.
Veldeman
,
P.
Claes
,
E.
Janssens
,
M.
Andersson
, and
P.
Lievens
,
J. Phys. Chem. A
115
,
2103
2109
(
2011
).
38.
P.
Ferrari
,
J.
Vanbuel
,
Y. L. T.
Li
,
E.
Janssens
, and
P.
Lievens
, “
Modifications of gas aggregation sources: The double laser ablation source approach
,” in
Gas Aggregation Synthesis of Nanoparticles
(
Wiley VCH
,
Weinheim
,
2017
), pp.
57
78
.
39.
M. A.
Duncan
,
Rev. Sci. Instrum.
83
,
041101
(
2012
).
40.
L. A.
Bloomfield
,
R. R.
Freeman
, and
W. L.
Brown
,
Phys. Rev. Lett.
54
,
2246
(
1985
).
41.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
42.
P.
Lu
,
X.-Y.
Kuang
,
A.-J.
Mao
,
Z.-H.
Wang
, and
Y.-R.
Zhao
,
Mol. Phys.
109
,
2057
2068
(
2011
).
43.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
44.
F.
Baletto
and
R.
Ferrando
,
Phys. Chem. Chem. Phys.
17
,
28256
28261
(
2015
).
45.
G. A.
Bishea
and
M. D.
Morse
,
J. Chem. Phys.
95
,
5646
(
1991
).
46.
C. J.
Owen
,
N. R.
Keyes
,
C.
Xie
,
H.
Guo
, and
P. B.
Armentrout
,
J. Chem. Phys.
150
,
174305
(
2019
).
47.
P.
Ferrari
,
G.-L.
Hou
,
O. V.
Lushchikova
,
F.
Calvo
,
J. M.
Bakker
, and
E.
Janssens
,
Phys. Chem. Chem. Phys.
22
,
11572
11577
(
2020
).
48.
J.
van der Tol
,
D.
Jia
,
Y.
Li
,
V.
Chernyy
,
J. M.
Bakker
,
M. T.
Nguyen
,
P.
Lievens
, and
E.
Janssens
,
Phys. Chem. Chem. Phys.
19
,
19360
19368
(
2017
).
49.
Z.
Luo
,
G. U.
Gamboa
,
J. C.
Smith
,
A. C.
Reber
,
J. U.
Reveles
,
S. N.
Khanna
, and
A. W.
Castleman
,
J. Am. Chem. Soc.
134
,
18973
18978
(
2012
).
50.
K.
Clemenger
,
Phys. Rev. B
32
,
1359(R)
(
1985
).
51.
M.
Vogel
,
K.
Hansen
,
A.
Herlert
, and
L.
Schweikhard
,
Eur. Phys. J. D
16
,
73
76
(
2001
).
52.
S.
Krishnamurty
,
K.
Joshi
,
S.
Zorriasatein
, and
D. G.
Kanhere
,
J. Chem. Phys.
127
,
054308
(
2007
).

Supplementary Material

You do not currently have access to this content.