[n]Cycloparaphenylene ([n]CPP) molecules have attracted broad interests due to their unique properties resulting from the distorted and strained aromatic hoop structures. In this work, we apply sub-nanometer resolved tip-enhanced Raman spectroscopy (TERS) to investigate the adsorption configurations and structural deformations of [12]CPP molecules on metal substrates with different crystallographic orientations. The TERS spectra for a [12]CPP molecule adsorbed on the isotropic Cu(100) surface are found to be essentially the same over the whole nanohoop, indicating an alternately twisted structure that is similar to the [12]CPP molecule in free space. However, when the [12]CPP molecules are adsorbed on the anisotropic Ag(110) surface, the molecular shape is found to be severely deformed into two types of adsorption configurations: one showing an interesting “Möbius-like” feature and the other showing a symmetric bending structure. Their TERS spectral features are found to be site-dependent over the hoop and even show peak splitting for the out-of-plane C–H bending vibrations. The deformed structural models gain strong support from the spatial distribution of “symmetric” TERS spectra at different positions on the hoop. Further TERS imaging, with a spatial resolution down to ∼2 Å, provides a panoramic view on the local structural deformations caused by different tilting of the benzene units in real space, which offers insights into the subtle changes in the aromatic properties over the deformed hoop owing to inhomogeneous molecule−substrate interactions. The ability of TERS to probe the molecular structure and local deformation at the sub-molecular level, as demonstrated here, is important for understanding surface science as well as molecular electronics and optoelectronics at the nanoscale.

1.
L. T.
Scott
, “
Conjugated belts and nanorings with radially oriented p orbitals
,”
Angew. Chem., Int. Ed.
42
,
4133
4135
(
2003
).
2.
K.
Tahara
and
Y.
Tobe
, “
Molecular loops and belts
,”
Chem. Rev.
106
,
5274
5290
(
2006
).
3.
T.
Kawase
and
H.
Kurata
, “
Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: Exploration of the concave–convex π–π interaction
,”
Chem. Rev.
106
,
5250
5273
(
2006
).
4.
M.
Fujitsuka
,
D. W.
Cho
,
T.
Iwamoto
,
S.
Yamago
, and
T.
Majima
, “
Size-dependent fluorescence properties of [n]cycloparaphenylenes (n = 8–13), hoop-shaped π-conjugated molecules
,”
Phys. Chem. Chem. Phys.
14
,
14585
14588
(
2012
).
5.
S. E.
Lewis
, “
Cycloparaphenylenes and related nanohoops
,”
Chem. Soc. Rev.
44
,
2221
2304
(
2015
).
6.
R.
Jasti
,
J.
Bhattacharjee
,
J. B.
Neaton
, and
C. R.
Bertozzi
, “
Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures
,”
J. Am. Chem. Soc.
130
,
17646
17647
(
2008
).
7.
B. D.
Steinberg
and
L. T.
Scott
, “
New strategies for synthesizing short sections of carbon nanotubes
,”
Angew. Chem., Int. Ed.
48
,
5400
5402
(
2009
).
8.
T. J.
Sisto
,
M. R.
Golder
,
E. S.
Hirst
, and
R.
Jasti
, “
Selective synthesis of strained [7]cycloparaphenylene: An orange-emitting fluorophore
,”
J. Am. Chem. Soc.
133
,
15800
15802
(
2011
).
9.
T.
Nishihara
,
Y.
Segawa
,
K.
Itami
, and
Y.
Kanemitsu
, “
Exciton recombination dynamics in nanoring cycloparaphenylenes
,”
Chem. Sci.
5
,
2293
2296
(
2014
).
10.
T.
Iwamoto
,
Y.
Watanabe
,
Y.
Sakamoto
,
T.
Suzuki
, and
S.
Yamago
, “
Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties
,”
J. Am. Chem. Soc.
133
,
8354
8361
(
2011
).
11.
T.
Iwamoto
,
Y.
Watanabe
,
T.
Sadahiro
,
T.
Haino
, and
S.
Yamago
, “
Size-selective encapsulation of C60 by [10]cycloparaphenylene: Formation of the shortest fullerene-peapod
,”
Angew. Chem., Int. Ed.
50
,
8342
8344
(
2011
).
12.
T.
Iwamoto
,
Y.
Watanabe
,
H.
Takaya
,
T.
Haino
,
N.
Yasuda
, and
S.
Yamago
, “
Size-and orientation-selective encapsulation of C70 by cycloparaphenylenes
,”
Chem. - Eur. J.
19
,
14061
14068
(
2013
).
13.
J.
Xia
,
J. W.
Bacon
, and
R.
Jasti
, “
Gram-scale synthesis and crystal structures of [8]-and [10]CPP, and the solid-state structure of C60@[10]CPP
,”
Chem. Sci.
3
,
3018
3021
(
2012
).
14.
M.
Fujitsuka
,
T.
Iwamoto
,
E.
Kayahara
,
S.
Yamago
, and
T.
Majima
, “
Enhancement of the quinoidal character for smaller [n]cycloparaphenylenes probed by Raman spectroscopy
,”
ChemPhysChem
14
,
1570
1572
(
2013
).
15.
H.
Chen
,
M. R.
Golder
,
F.
Wang
,
R.
Jasti
, and
A. K.
Swan
, “
Raman spectroscopy of carbon nanohoops
,”
Carbon
67
,
203
213
(
2014
).
16.
H.
Chen
,
M. R.
Golder
,
F.
Wang
,
S. K.
Doorn
,
R.
Jasti
,
S.
Tretiak
, and
A. K.
Swan
, “
Raman-active modes of even-numbered cycloparaphenylenes: Comparisons between experiments and density functional theory (DFT) calculations with group theory arguments
,”
J. Phys. Chem. C
119
,
2879
2887
(
2015
).
17.
B. N.
Taber
,
C. F.
Gervasi
,
J. M.
Mills
,
D. A.
Kislitsyn
,
E. R.
Darzi
,
W. G.
Crowley
,
R.
Jasti
, and
G. V.
Nazin
, “
Quantum confinement of surface electrons by molecular nanohoop corrals
,”
J. Phys. Chem. Lett.
7
,
3073
3077
(
2016
).
18.
R. M.
Stöckle
,
Y. D.
Suh
,
V.
Deckert
, and
R.
Zenobi
, “
Nanoscale chemical analysis by tip-enhanced Raman spectroscopy
,”
Chem. Phys. Lett.
318
,
131
136
(
2000
).
19.
N.
Hayazawa
,
Y.
Inouye
,
Z.
Sekkat
, and
S.
Kawata
, “
Metallized tip amplification of near-field Raman scattering
,”
Opt. Commun.
183
,
333
336
(
2000
).
20.
B.
Pettinger
,
G.
Picardi
,
R.
Schuster
, and
G.
Ertl
, “
Surface enhanced Raman spectroscopy: Towards single molecule spectroscopy
,”
Electrochemistry
68
,
942
949
(
2000
).
21.
M. S.
Anderson
, “
Locally enhanced Raman spectroscopy with an atomic force microscope
,”
Appl. Phys. Lett.
76
,
3130
3132
(
2000
).
22.
E.
Bailo
and
V.
Deckert
, “
Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method
,”
Angew. Chem., Int. Ed.
47
,
1658
1661
(
2008
).
23.
C. C.
Neacsu
,
J.
Dreyer
,
N.
Behr
, and
M. B.
Raschke
, “
Scanning-probe Raman spectroscopy with single-molecule sensitivity
,”
Phys. Rev. B
73
,
193406
(
2006
).
24.
J.-H.
Zhong
,
X.
Jin
,
L.
Meng
,
X.
Wang
,
H.-S.
Su
,
Z.-L.
Yang
,
C. T.
Williams
, and
B.
Ren
, “
Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution
,”
Nat. Nanotechnol.
12
,
132
(
2017
).
25.
H.
Yin
,
L.-Q.
Zheng
,
W.
Fang
,
Y.-H.
Lai
,
N.
Porenta
,
G.
Goubert
,
H.
Zhang
,
H.-S.
Su
,
B.
Ren
,
J. O.
Richardson
,
J.-F.
Li
, and
R.
Zenobi
, “
Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst
,”
Nat. Catal.
3
,
834
842
(
2020
).
26.
J.
Steidtner
and
B.
Pettinger
, “
Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution
,”
Phys. Rev. Lett.
100
,
236101
(
2008
).
27.
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
C.
Zhang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
, “
Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
,”
Nature
498
,
82
86
(
2013
).
28.
J.
Lee
,
K. T.
Crampton
,
N.
Tallarida
, and
V. A.
Apkarian
, “
Visualizing vibrational normal modes of a single molecule with atomically confined light
,”
Nature
568
,
78
82
(
2019
).
29.
Y.
Zhang
,
B.
Yang
,
A.
Ghafoor
,
Y.
Zhang
,
Y. F.
Zhang
,
R. P.
Wang
,
J. L.
Yang
,
Y.
Luo
,
Z. C.
Dong
, and
J. G.
Hou
, “
Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy
,”
Natl. Sci. Rev.
6
,
1169
1175
(
2019
).
30.
Y.
Zhang
,
R.
Zhang
,
S.
Jiang
,
Y.
Zhang
, and
Z. C.
Dong
, “
Probing adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy
,”
ChemPhysChem
20
,
37
41
(
2019
).
31.
S.
Jiang
,
Y.
Zhang
,
R.
Zhang
,
C. R.
Hu
,
M. H.
Liao
,
Y.
Luo
,
J. L.
Yang
,
Z. C.
Dong
, and
J. G.
Hou
, “
Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering
,”
Nat. Nanotechnol.
10
,
865
869
(
2015
).
32.
R.
Zhang
,
X. B.
Zhang
,
H. F.
Wang
,
Y.
Zhang
,
S.
Jiang
,
C. R.
Hu
,
Y.
Zhang
,
Y.
Luo
, and
Z. C.
Dong
, “
Distinguishing individual DNA bases in a network by non-resonant tip-enhanced Raman scattering
,”
Angew. Chem., Int. Ed.
129
,
5653
5656
(
2017
).
33.
N.
Chiang
,
X.
Chen
,
G.
Goubert
,
D. V.
Chulhai
,
X.
Chen
,
E. A.
Pozzi
,
N.
Jiang
,
M. C.
Hersam
,
T.
Seideman
,
L.
Jensen
, and
R. P.
Van Duyne
, “
Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy
,”
Nano Lett.
16
,
7774
7778
(
2016
).
34.
J. F.
Schultz
,
L.
Li
,
S.
Mahapatra
,
C.
Shaw
,
X.
Zhang
, and
N.
Jiang
, “
Defining multiple configurations of rubrene on a Ag(100) surface with 5 Å spatial resolution via ultrahigh vacuum tip-enhanced Raman spectroscopy
,”
J. Phys. Chem. C
124
,
2420
2426
(
2019
).
35.
R. B.
Jaculbia
,
H.
Imada
,
K.
Miwa
,
T.
Iwasa
,
M.
Takenaka
,
B.
Yang
,
E.
Kazuma
,
N.
Hayazawa
,
T.
Taketsugu
, and
Y.
Kim
, “
Single-molecule resonance Raman effect in a plasmonic nanocavity
,”
Nat. Nanotechnol.
15
,
105
110
(
2020
).
36.
A.
Ghafoor
,
B.
Yang
,
Y. J.
Yu
,
Y. F.
Zhang
,
X. B.
Zhang
,
G.
Chen
,
Y.
Zhang
,
Y.
Zhang
, and
Z. C.
Dong
, “
Site-dependent TERS study of a porphyrin molecule on Ag(100) at 7 K
,”
Chin. J. Chem. Phys.
32
,
287
291
(
2019
).
37.
C.
Zhang
,
B.
Gao
,
L. G.
Chen
,
Q. S.
Meng
,
H.
Yang
,
R.
Zhang
,
X.
Tao
,
H. Y.
Gao
,
Y.
Liao
, and
Z. C.
Dong
, “
Fabrication of silver tips for scanning tunneling microscope induced luminescence
,”
Rev. Sci. Instrum.
82
,
083101
(
2011
).
38.
J.
Hahn
and
W.
Ho
, “
Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope
,”
Phys. Rev. Lett.
87
,
196102
(
2001
).
39.
Z. S.
Yoon
,
A.
Osuka
, and
D.
Kim
, “
Möbius aromaticity and antiaromaticity in expanded porphyrins
,”
Nat. Chem.
1
,
113
122
(
2009
).
You do not currently have access to this content.