Based on our recently published range-separated random phase approximation (RPA) functional [Kreppel et al., “Range-separated density-functional theory in combination with the random phase approximation: An accuracy benchmark,” J. Chem. Theory Comput. 16, 2985–2994 (2020)], we introduce self-consistent minimization with respect to the one-particle density matrix. In contrast to the range-separated RPA methods presented so far, the new method includes a long-range nonlocal RPA correlation potential in the orbital optimization process, making it a full-featured variational generalized Kohn–Sham (GKS) method. The new method not only improves upon all other tested RPA schemes including the standard post-GKS range-separated RPA for the investigated test cases covering general main group thermochemistry, kinetics, and noncovalent interactions but also significantly outperforms the popular G0W0 method in estimating the ionization potentials and fundamental gaps considered in this work using the eigenvalue spectra obtained from the GKS Hamiltonian.

1.
J. P.
Perdew
, “
Orbital functional for exchange and correlation: Self-interaction correction to the local density approximation
,”
Chem. Phys. Lett.
64
,
127
130
(
1979
).
2.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
3.
L. A.
Cole
and
J. P.
Perdew
, “
Calculated electron affinities of the elements
,”
Phys. Rev. A
25
,
1265
1271
(
1982
).
4.
C.
Toher
,
A.
Filippetti
,
S.
Sanvito
, and
K.
Burke
, “
Self-interaction errors in density-functional calculations of electronic transport
,”
Phys. Rev. Lett.
95
,
146402
(
2005
).
5.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Insights into current limitations of density functional theory
,”
Science
321
,
792
794
(
2008
).
6.
Y.
Zhang
and
W.
Yang
, “
A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons
,”
J. Chem. Phys.
109
,
2604
(
1998
).
7.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
320
(
2012
).
8.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Localization and delocalization errors in density functional theory and implications for band-gap prediction
,”
Phys. Rev. Lett.
100
,
146401
(
2008
).
9.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Many-electron self-interaction error in approximate density functionals
,”
J. Chem. Phys.
125
,
201102
(
2006
).
10.
T. M.
Henderson
and
G. E.
Scuseria
, “
The connection between self-interaction and static correlation: A random phase approximation perspective
,”
Mol. Phys.
108
,
2511
2517
(
2010
).
11.
C.-O.
Almbladh
and
U.
Von Barth
, “
Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues
,”
Phys. Rev. B
31
,
3231
3244
(
1985
).
12.
R.
Van Leeuwen
and
E. J.
Baerends
, “
Exchange-correlation potential with correct asymptotic behavior
,”
Phys. Rev. A
49
,
2421
2431
(
1994
).
13.
S. A. C.
McDowell
,
R. D.
Amos
, and
N. C.
Handy
, “
Molecular polarisabilities—A comparison of density functional theory with standard ab initio methods
,”
Chem. Phys. Lett.
235
,
1
4
(
1995
).
14.
J.
Pérez-Jordá
and
A. D.
Becke
, “
A density-functional study of van der Waals forces: Rare gas diatomics
,”
Chem. Phys. Lett.
233
,
134
137
(
1995
).
15.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
16.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
17.
S.
Kurth
and
J. P.
Perdew
, “
Density-functional correction of random-phase-approximation correlation with results for jellium surface energies
,”
Phys. Rev. B
59
,
10461
10468
(
1999
).
18.
J. F.
Dobson
and
J.
Wang
, “
Successful test of a seamless van der waals density functional
,”
Phys. Rev. Lett.
82
,
2123
2126
(
1999
).
19.
F.
Furche
, “
Molecular tests of the random phase approximation to the exchange-correlation energy functional
,”
Phys. Rev. B
64
,
195120
(
2001
).
20.
M.
Fuchs
and
X.
Gonze
, “
Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem
,”
Phys. Rev. B
65
,
235109
(
2002
).
21.
Y. M.
Niquet
,
M.
Fuchs
, and
X.
Gonze
, “
Exchange-correlation potentials in the adiabatic connection fluctuation-dissipation framework
,”
Phys. Rev. A
68
,
032507
(
2003
).
22.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
, “
Describing static correlation in bond dissociation by Kohn-Sham density functional theory
,”
J. Chem. Phys.
122
,
094116
(
2005
).
23.
F.
Furche
and
T.
Van Voorhis
, “
Fluctuation-dissipation theorem density-functional theory
,”
J. Chem. Phys.
122
,
164106
(
2005
).
24.
G. P.
Chen
,
V. K.
Voora
,
M. M.
Agee
,
S. G.
Balasubramani
, and
F.
Furche
, “
Random-phase approximation methods
,”
Annu. Rev. Phys. Chem.
68
,
421
445
(
2017
).
25.
H.
Eshuis
and
F.
Furche
, “
Basis set convergence of molecular correlation energy differences within the random phase approximation
,”
J. Chem. Phys.
136
,
084105
(
2012
).
26.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
, “
Electron correlation methods based on the random phase approximation
,”
Theor. Chem. Acc.
131
,
1084
(
2012
).
27.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
, “
Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration
,”
J. Chem. Phys.
132
,
234114
(
2010
).
28.
J. E.
Bates
and
F.
Furche
, “
Communication: Random phase approximation renormalized many-body perturbation theory
,”
J. Chem. Phys.
139
,
171103
(
2013
).
29.
F.
Furche
, “
Developing the random phase approximation into a practical post-Kohn-Sham correlation model
,”
J. Chem. Phys.
129
,
114105
(
2008
).
30.
V. K.
Voora
,
S. G.
Balasubramani
, and
F.
Furche
, “
Variational generalized Kohn-Sham approach combining the random-phase-approximation and Green’s-function methods
,”
Phys. Rev. A
99
,
012518
(
2019
).
31.
A. M.
Burow
,
J. E.
Bates
,
F.
Furche
, and
H.
Eshuis
, “
Analytical first-order molecular properties and forces within the adiabatic connection random phase approximation
,”
J. Chem. Theory Comput.
10
,
180
194
(
2014
).
32.
H.
Eshuis
and
F.
Furche
, “
A parameter-free density functional that works for noncovalent interactions
,”
J. Phys. Chem. Lett.
2
,
983
989
(
2011
).
33.
A.
Heßelmann
and
A.
Görling
, “
Random phase approximation correlation energies with exact Kohn-Sham exchange
,”
Mol. Phys.
108
,
359
372
(
2010
).
34.
A.
Heßelmann
and
A.
Görling
, “
Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional
,”
Phys. Rev. Lett.
106
,
093001
(
2011
).
35.
A.
Heßelmann
and
A.
Görling
, “
Random-phase approximation correlation methods for molecules and solids
,”
Mol. Phys.
109
,
2473
2500
(
2011
).
36.
J.
Paier
,
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
,
A.
Grüneis
,
G.
Kresse
, and
M.
Scheffler
, “
Assessment of correlation energies based on the random-phase approximation
,”
New J. Phys.
14
,
043002
(
2012
).
37.
X.
Ren
,
A.
Tkatchenko
,
P.
Rinke
, and
M.
Scheffler
, “
Beyond the random-phase approximation for the electron correlation energy: The importance of single excitations
,”
Phys. Rev. Lett.
106
,
153003
(
2011
).
38.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
, “
Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation
,”
J. Chem. Phys.
136
,
134102
(
2012
).
39.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
, “
Random-phase approximation and its applications in computational chemistry and materials science
,”
J. Mater. Sci.
47
,
7447
7471
(
2012
).
40.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
, “
The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach
,”
J. Chem. Phys.
129
,
231101
(
2008
).
41.
A.
Kreppel
,
D.
Graf
,
H.
Laqua
, and
C.
Ochsenfeld
, “
Range-separated density-functional theory in combination with the random phase approximation: An accuracy benchmark
,”
J. Chem. Theory Comput.
16
,
2985
2994
(
2020
).
42.
D.
Graf
,
M.
Beuerle
, and
C.
Ochsenfeld
, “
Low-scaling self-consistent minimization of a density matrix based random phase approximation method in the atomic orbital space
,”
J. Chem. Theory Comput.
15
,
4468
4477
(
2019
).
43.
D.
Graf
,
M.
Beuerle
,
H. F.
Schurkus
,
A.
Luenser
,
G.
Savasci
, and
C.
Ochsenfeld
, “
Accurate and efficient parallel implementation of an effective linear-scaling direct random phase approximation method
,”
J. Chem. Theory Comput.
14
,
2505
2515
(
2018
).
44.
M.
Beuerle
,
D.
Graf
,
H. F.
Schurkus
, and
C.
Ochsenfeld
, “
Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism
,”
J. Chem. Phys.
148
,
204104
(
2018
).
45.
M.
Beuerle
and
C.
Ochsenfeld
, “
Short-range second order screened exchange correction to RPA correlation energies
,”
J. Chem. Phys.
147
,
204107
(
2017
).
46.
M.
Beuerle
and
C.
Ochsenfeld
, “
Low-scaling analytical gradients for the direct random phase approximation using an atomic orbital formalism
,”
J. Chem. Phys.
149
,
244111
(
2018
).
47.
H. F.
Schurkus
and
C.
Ochsenfeld
, “
Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation
,”
J. Chem. Phys.
144
,
031101
(
2016
).
48.
A.
Luenser
,
H. F.
Schurkus
, and
C.
Ochsenfeld
, “
Vanishing-overhead linear-scaling random phase approximation by Cholesky decomposition and an attenuated Coulomb-metric
,”
J. Chem. Theory Comput.
13
,
1647
1655
(
2017
).
49.
J. F.
Dobson
,
Time-Dependent Density Functional Theory
(
Springer
,
Berlin
,
2006
).
50.
J. P.
Perdew
, “
Local density and gradient-corrected functionals for short-range correlation: Antiparallel-spin and non-RPA contributions
,”
Int. J. Quantum Chem.
48
,
93
100
(
1993
).
51.
J.
Harl
and
G.
Kresse
, “
Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory
,”
Phys. Rev. B
77
,
045136
(
2008
).
52.
G.
Kresse
and
J.
Harl
, “
Accurate bulk properties from approximate many-body techniques
,”
Phys. Rev. Lett.
103
,
056401
(
2009
).
53.
D. C.
Langreth
and
J. P.
Perdew
, “
The exchange-correlation energy of a metallic surface
,”
Solid State Commun.
17
,
1425
1429
(
1975
).
54.
D. C.
Langreth
and
J. P.
Perdew
, “
Exchange-correlation energy of a metallic surface: Wave-vector analysis
,”
Phys. Rev. B
15
,
2884
2901
(
1977
).
55.
J. F.
Dobson
, “
Dispersion (van der Waals) forces and TDDFT
,” in
Fundamentals of Time-Dependent Density Functionl Theory
, edited by
M.
Marques
,
N.
Maitra
,
F.
Nogueira
,
E.
Gross
, and
A.
Rubio
(
Springer-Verlag
,
Berlin
,
2012
).
56.
K. S.
Singwi
,
M. P.
Tosi
,
R. H.
Land
, and
A.
Sjölander
, “
Electron correlations at metallic densities
,”
Phys. Rev.
176
,
589
599
(
1968
).
57.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Failure of the random-phase-approximation correlation energy
,”
Phys. Rev. A
85
,
042507
(
2012
).
58.
Z.
Yan
,
J. P.
Perdew
, and
S.
Kurth
, “
Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes
,”
Phys. Rev. B
61
,
16430
16439
(
2000
).
59.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
, “
Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation
,”
Phys. Rev. Lett.
102
,
096404
(
2009
).
60.
T.
Kato
, “
On the eigenfunctions of many-particle systems in quantum mechanics
,”
Commun. Pure Appl. Math.
10
,
151
177
(
1957
).
61.
A.
Savin
, in
Recent Developments of Modern Density Functional Theory
, edited by
J. M.
Seminaria
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
62.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range–short-range separation of the electron-electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
63.
I. C.
Gerber
and
J. G.
Ángyán
, “
Hybrid functional with separated range
,”
Chem. Phys. Lett.
415
,
100
105
(
2005
).
64.
J. L.
Bao
,
Y.
Wang
,
X.
He
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Multiconfiguration pair-density functional theory is free from delocalization error
,”
J. Phys. Chem. Lett.
8
,
5616
5620
(
2017
).
65.
N.
Colonna
,
N. L.
Nguyen
,
A.
Ferretti
, and
N.
Marzari
, “
Koopmans-compliant functionals and potentials and their application to the GW100 test set
,”
J. Chem. Theory Comput.
15
,
1905
1914
(
2019
).
66.
J.
Toulouse
,
W.
Zhu
,
A.
Savin
,
G.
Jansen
, and
J. G.
Ángyán
, “
Closed-shell ring coupled cluster doubles theory with range separation applied on weak intermolecular interactions
,”
J. Chem. Phys.
135
,
084119
(
2011
).
67.
B.
Mussard
,
P.
Reinhardt
,
J. G.
Ángyán
, and
J.
Toulouse
, “
Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights
,”
J. Chem. Phys.
142
,
154123
(
2015
).
68.
W.
Zhu
,
J.
Toulouse
,
A.
Savin
, and
J. G.
Ángyán
, “
Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions
,”
J. Chem. Phys.
132
,
244108
(
2010
).
69.
J.
Toulouse
,
W.
Zhu
,
J. G.
Ángyán
, and
A.
Savin
, “
Range-separated density-functional theory with the random-phase approximation: Detailed formalism and illustrative applications
,”
Phys. Rev. A
82
,
032502
(
2010
).
70.
J. G.
Ángyán
,
R.-F.
Liu
,
J.
Toulouse
, and
G.
Jansen
, “
Correlation energy expressions from the adiabatic-connection fluctuation–dissipation theorem approach
,”
J. Chem. Theory Comput.
7
,
3116
3130
(
2011
).
71.
E.
Chermak
,
B.
Mussard
,
J. G.
Ángyán
, and
P.
Reinhardt
, “
Short range DFT combined with long-range local RPA within a range-separated hybrid DFT framework
,”
Chem. Phys. Lett.
550
,
162
169
(
2012
).
72.
B.
Mussard
,
P. G.
Szalay
, and
J. G.
Ángyán
, “
Analytical energy gradients in range-separated hybrid density functional theory with random phase approximation
,”
J. Chem. Theory Comput.
10
,
1968
1979
(
2014
).
73.
C.
Kalai
,
B.
Mussard
, and
J.
Toulouse
, “
Range-separated double-hybrid density-functional theory with coupled-cluster and random-phase approximations
,”
J. Chem. Phys.
151
,
074102
(
2019
).
74.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Long-range-corrected hybrids including random phase approximation correlation
,”
J. Chem. Phys.
130
,
081105
(
2009
).
75.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Long-range-corrected hybrid density functionals including random phase approximation correlation: Application to noncovalent interactions
,”
J. Chem. Phys.
131
,
034110
(
2009
).
76.
B. G.
Janesko
and
G. E.
Scuseria
, “
The role of the reference state in long-range random phase approximation correlation
,”
J. Chem. Phys.
131
,
154106
(
2009
).
77.
J.
Paier
,
B. G.
Janesko
,
T. M.
Henderson
,
G. E.
Scuseria
,
A.
Grüneis
, and
G.
Kresse
, “
Hybrid functionals including random phase approximation correlation and second-order screened exchange
,”
J. Chem. Phys.
132
,
094103
(
2010
).
78.
R. M.
Irelan
,
T. M.
Henderson
, and
G. E.
Scuseria
, “
Long-range-corrected hybrids using a range-separated Perdew-Burke-Ernzerhof functional and random phase approximation correlation
,”
J. Chem. Phys.
135
,
094105
(
2011
).
79.
A. J.
Garza
,
I. W.
Bulik
,
A. G. S.
Alencar
,
J.
Sun
,
J. P.
Perdew
, and
G. E.
Scuseria
, “
Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions
,”
Mol. Phys.
114
,
997
1018
(
2016
).
80.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
81.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
, “
Generalized Kohn-Sham schemes and the band-gap problem
,”
Phys. Rev. B
53
,
3764
3774
(
1996
).
82.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
, “
Efficient self-consistent treatment of electron correlation within the random phase approximation
,”
J. Chem. Phys.
139
,
084113
(
2013
).
83.
A.
Thierbach
,
D.
Schmidtel
, and
A.
Görling
, “
Robust and accurate hybrid random-phase-approximation methods
,”
J. Chem. Phys.
151
,
144117
(
2019
).
84.
M.
Modrzejewski
,
S.
Yourdkhani
, and
J.
Klimeš
, “
Random phase approximation applied to many-body noncovalent systems
,”
J. Chem. Theory Comput.
16
,
427
442
(
2020
).
85.
A.
Heßelmann
and
J.
Ángyán
, “
Assessment of a range-separated orbital-optimised random-phase approximation electron correlation method
,”
Theor. Chem. Acc.
137
,
155
(
2018
).
86.
A.
Görling
, “
Orbital- and state-dependent functionals in density-functional theory
,”
J. Chem. Phys.
123
,
062203
(
2005
).
87.
R. T.
Sharp
and
G. K.
Horton
, “
A variational approach to the unipotential many-electron problem
,”
Phys. Rev.
90
,
317
(
1953
).
88.
J. D.
Talman
and
W. F.
Shadwick
, “
Optimized effective atomic central potential
,”
Phys. Rev. A
14
,
36
40
(
1976
).
89.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
, “
Exact Kohn-Sham exchange potential in semiconductors
,”
Phys. Rev. Lett.
79
,
2089
2092
(
1997
).
90.
A.
Görling
, “
New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential
,”
Phys. Rev. Lett.
83
,
5459
5462
(
1999
).
91.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
, “
Exact exchange treatment for molecules in finite-basis-set Kohn-Sham theory
,”
Phys. Rev. Lett.
83
,
5455
5458
(
1999
).
92.
M.
Städele
,
M.
Moukara
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
, “
Exact exchange Kohn-Sham formalism applied to semiconductors
,”
Phys. Rev. B
59
,
10031
10043
(
1999
).
93.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
, “
Can optimized effective potentials be determined uniquely?
,”
J. Chem. Phys.
115
,
1635
1649
(
2001
).
94.
S.
Kümmel
and
J. P.
Perdew
, “
Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange
,”
Phys. Rev. Lett.
90
,
043004
(
2003
).
95.
W.
Yang
and
Q.
Wu
, “
Direct method for optimized effective potentials in density-functional theory
,”
Phys. Rev. Lett.
89
,
143002
(
2002
).
96.
Q.
Wu
and
W.
Yang
, “
Algebraic equation and iterative optimization for the optimized effective potential in density functional theory
,”
J. Theor. Comput. Chem.
02
,
627
638
(
2003
).
97.
A.
Heßelmann
and
A.
Görling
, “
Comparison between optimized effective potential and Kohn–Sham methods
,”
Chem. Phys. Lett.
455
,
110
119
(
2008
).
98.
A.
Görling
,
A.
Heßelmann
,
M.
Jones
, and
M.
Levy
, “
Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions
,”
J. Chem. Phys.
128
,
104104
(
2008
).
99.
P.
Verma
and
R. J.
Bartlett
, “
Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond
,”
J. Chem. Phys.
136
,
044105
(
2012
).
100.
N. L.
Nguyen
,
N.
Colonna
, and
S.
de Gironcoli
, “
Ab initio self-consistent total-energy calculations within the EXX/RPA formalism
,”
Phys. Rev. B
90
,
045138
(
2014
).
101.
M.
Hellgren
,
F.
Caruso
,
D. R.
Rohr
,
X.
Ren
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
, “
Static correlation and electron localization in molecular dimers from the self-consistent RPA and GW approximation
,”
Phys. Rev. B
91
,
165110
(
2015
).
102.
A.
Görling
, “
Hierarchies of methods towards the exact Kohn-Sham correlation energy based on the adiabatic-connection fluctuation-dissipation theorem
,”
Phys. Rev. B
99
,
235120
(
2019
).
103.
A.
Einstein
, “
Die grundlage der allgemeinen relativitätstheorie
,”
Ann. Phys.
354
,
769
822
(
1916
).
104.
E.
Goll
,
H.-J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
, “
A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers
,”
Chem. Phys.
329
,
276
282
(
2006
).
105.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
, “
Combining long-range configuration interaction with short-range density functional
,”
Chem. Phys. Lett.
275
,
151
160
(
1997
).
106.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
, “
Low scaling algorithms for the random phase approximation: Imaginary time and Laplace transformations
,”
J. Chem. Theory Comput.
10
,
2498
2507
(
2014
).
107.
M.
Hellgren
and
U.
von Barth
, “
Correlation potential in density functional theory at the GWA level: Spherical atoms
,”
Phys. Rev. B
76
,
075107
(
2007
).
108.
J.
Kussmann
and
C.
Ochsenfeld
, “
Pre-selective screening for matrix elements in linear-scaling exact exchange calculations
,”
J. Chem. Phys.
138
,
134114
(
2013
).
109.
J.
Kussmann
and
C.
Ochsenfeld
, “
Preselective screening for linear-scaling exact exchange-gradient calculations for graphics processing units and general strong-scaling massively parallel calculations
,”
J. Chem. Theory Comput.
11
,
918
922
(
2015
).
110.
J.
Kussmann
and
C.
Ochsenfeld
, “
Hybrid CPU/GPU integral engine for strong-scaling ab initio methods
,”
J. Chem. Theory Comput.
13
,
3153
3159
(
2017
).
111.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
112.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
113.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
, “
van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections
,”
Phys. Rev. A
72
,
012510
(
2005
).
114.
B.
Mussard
and
J.
Toulouse
, “
Fractional-charge and fractional-spin errors in range-separated density-functional theory
,”
Mol. Phys.
115
,
161
173
(
2017
).
115.
O.
Franck
,
B.
Mussard
,
E.
Luppi
, and
J.
Toulouse
, “
Basis convergence of range-separated density-functional theory
,”
J. Chem. Phys.
142
,
074107
(
2015
).
116.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
109
(
2010
).
117.
A.
Karolewski
,
L.
Kronik
, and
S.
Kümmel
, “
Using optimally tuned range separated hybrid functionals in ground-state calculations: Consequences and caveats
,”
J. Chem. Phys.
138
,
204115
(
2013
).
118.
É.
Brémond
,
Á. J.
Pérez-Jiménez
,
J. C.
Sancho-García
, and
C.
Adamo
, “
Range-separated hybrid density functionals made simple
,”
J. Chem. Phys.
150
,
201102
(
2019
).
119.
Z.
Lin
and
T.
Van Voorhis
, “
Triplet tuning: A novel family of non-empirical exchange-correlation functionals
,”
J. Chem. Theory Comput.
15
,
1226
1241
(
2019
).
120.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr
,”
J. Chem. Phys.
119
,
12753
12762
(
2003
).
121.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
122.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
123.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
124.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
,
R.
Ahlrichs
, and
RI-MP2
, “
Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
125.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
126.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
,
59
66
(
2005
).
127.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Auxiliary basis expansions for large-scale electronic structure calculations
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6692
6697
(
2005
).
128.
Y.
Jung
,
Y.
Shao
, and
M.
Head-Gordon
, “
Fast evaluation of scaled opposite spin second-order Møller–Plesset correlation energies using auxiliary basis expansions and exploiting sparsity
,”
J. Comput. Chem.
28
,
1953
1964
(
2007
).
129.
S.
Reine
,
E.
Tellgren
,
A.
Krapp
,
T.
Kjærgaard
,
T.
Helgaker
,
B.
Jansik
,
S.
Høst
, and
P.
Salek
, “
Variational and robust density fitting of four-center two-electron integrals in local metrics
,”
J. Chem. Phys.
129
,
104101
(
2008
).
130.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
, “
Exact differential equation for the density and ionization energy of a many-particle system
,”
Phys. Rev. A
30
,
2745
2748
(
1984
).
131.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
, “
The GW-method for quantum chemistry applications: Theory and implementation
,”
J. Chem. Theory Comput.
9
,
232
246
(
2013
).
132.
D. L.
Freeman
, “
Coupled-cluster expansion applied to the electron gas: Inclusion of ring and exchange effects
,”
Phys. Rev. B
15
,
5512
5521
(
1977
).
133.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
, “
Making the random phase approximation to electronic correlation accurate
,”
J. Chem. Phys.
131
,
154115
(
2009
).

Supplementary Material

You do not currently have access to this content.