Efficient implementations of the orbital-optimized coupled-cluster doubles (or simply “optimized CCD,” OCCD, for short) method and its analytic energy gradients with the density-fitting (DF) approach, denoted by DF-OCCD, are presented. In addition to the DF approach, the Cholesky-decomposed variant (CD-OCCD) is also implemented for energy computations. The computational cost of the DF-OCCD method (available in a plugin version of the DFOCC module of PSI4) is compared with that of the conventional OCCD (from the Q-CHEM package). The OCCD computations were performed with the Q-CHEM package in which OCCD are denoted by OD. In the conventional OCCD method, one needs to perform four-index integral transformations at each of the CCD iterations, which limits its applications to large chemical systems. Our results demonstrate that DF-OCCD provides dramatically lower computational costs compared to OCCD, and there are almost eightfold reductions in the computational time for the C6H14 molecule with the cc-pVTZ basis set. For open-shell geometries, interaction energies, and hydrogen transfer reactions, DF-OCCD provides significant improvements upon DF-CCD. Furthermore, the performance of the DF-OCCD method is substantially better for harmonic vibrational frequencies in the case of symmetry-breaking problems. Moreover, several factors make DF-OCCD more attractive compared to CCSD: (1) for DF-OCCD, there is no need for orbital relaxation contributions in analytic gradient computations; (2) active spaces can readily be incorporated into DF-OCCD; (3) DF-OCCD provides accurate vibrational frequencies when symmetry-breaking problems are observed; (4) in its response function, DF-OCCD avoids artificial poles; hence, excited-state molecular properties can be computed via linear response theory; and (5) symmetric and asymmetric triples corrections based on DF-OCCD [DF-OCCD(T)] have a significantly better performance in near degeneracy regions.

1.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
2.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
3.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
4.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
5.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
6.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
7.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
8.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
9.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
10.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
11.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
12.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
13.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
14.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
15.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
16.
W.
Kurlancheek
,
K.
Lawler
,
R. C.
Lochan
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
17.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
18.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
19.
U.
Bozkaya
,
J. Chem. Phys.
139
,
104116
(
2013
).
20.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
21.
A. Y.
Sokolov
and
H. F.
Schaefer
,
J. Chem. Phys.
139
,
204110
(
2013
).
22.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2371
(
2014
).
23.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
4389
(
2014
).
24.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
141
,
204105
(
2014
).
25.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
14
,
5203
(
2018
).
26.
J.
Lee
and
M.
Head-Gordon
,
J. Chem. Phys.
150
,
244106
(
2019
).
27.
L. W.
Bertels
,
J.
Lee
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
10
,
4170
(
2019
).
28.
C.
Kollmar
and
A.
Heßelmann
,
Theor. Chem. Acc.
127
,
311
(
2010
).
29.
C.
Kollmar
and
F.
Neese
,
J. Chem. Phys.
135
,
084102
(
2011
).
30.
U.
Bozkaya
,
Phys. Chem. Chem. Phys.
18
,
11362
(
2016
).
31.
U.
Bozkaya
,
J. Chem. Theory Comput.
12
,
1179
(
2016
).
32.
U.
Bozkaya
,
J. Comput. Chem.
39
,
351
(
2018
).
33.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
135
,
044113
(
2011
).
34.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
136
,
054114
(
2012
).
35.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
36.
E.
Soydaş
and
U.
Bozkaya
,
J. Comput. Chem.
35
,
1073
(
2014
).
37.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
11
,
1564
(
2015
).
38.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Theory Comput.
8
,
2653
(
2012
).
39.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
4679
(
2013
).
40.
U.
Bozkaya
,
J. Chem. Phys.
139
,
154105
(
2013
).
41.
U.
Bozkaya
,
J. Chem. Theory Comput.
10
,
2041
(
2014
).
42.
D.
Yildiz
and
U.
Bozkaya
,
J. Comput. Chem.
37
,
345
(
2016
).
43.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
44.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
45.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
46.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
47.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
101
,
400
(
1994
).
48.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
49.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
50.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
51.
A. E.
DePrince
and
C. D.
Sherrill
,
J. Chem. Theory Comput.
9
,
2687
(
2013
).
52.
U.
Bozkaya
,
J. Chem. Phys.
141
,
124108
(
2014
).
53.
U.
Bozkaya
,
J. Chem. Phys.
144
,
144108
(
2016
).
54.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
144
,
174103
(
2016
).
55.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
044104
(
2017
).
56.
U.
Bozkaya
,
J. Chem. Theory Comput.
15
,
4415
(
2019
).
57.
N. H. F.
Beebe
and
J.
Linderberg
,
Int. J. Quantum Chem.
12
,
683
(
1977
).
58.
I.
Roeggen
and
E.
Wisloff-Nilssen
,
Chem. Phys. Lett.
132
,
154
(
1986
).
59.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
60.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
61.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
62.
C.
Hättig
,
A.
Hellweg
, and
A.
Köhn
,
Phys. Chem. Chem. Phys.
8
,
1159
(
2006
).
63.
R. A.
Distasio
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
,
J. Comput. Chem.
28
,
839
(
2007
).
64.
M.
Schütz
,
H.-J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
,
737
(
2004
).
65.
C.
Hättig
,
J. Chem. Phys.
118
,
7751
(
2003
).
66.
A.
Köhn
and
C.
Hättig
,
J. Chem. Phys.
119
,
5021
(
2003
).
67.
W.
Györffy
,
T.
Shiozaki
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
138
,
104104
(
2013
).
68.
K.
Ledermüller
and
M.
Schütz
,
J. Chem. Phys.
140
,
164113
(
2014
).
69.
F.
Aquilante
,
R.
Lindh
, and
T. B.
Pedersen
,
J. Chem. Phys.
129
,
034106
(
2008
).
70.
X.
Feng
,
E.
Epifanovsky
,
J.
Gauss
, and
A. I.
Krylov
,
J. Chem. Phys.
151
,
014110
(
2019
).
71.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Phys.
152
,
184108
(
2020
).
72.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge Press
,
New York
,
2009
), pp.
443
449
.
73.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
74.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
75.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
76.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
77.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
78.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2639
(
1991
).
79.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
103
,
3561
(
1995
).
80.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
116
,
1773
(
2001
).
81.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
82.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
John Wiley & Sons
,
New York
,
2000
), pp.
496
504
.
83.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
84.
R.
Shepard
, in
Modern Electronic Structure Theory Part I
, Advanced Series in Physical Chemistry Vol. 2, 1st ed., edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
85.
86.
T.
Helgaker
,
P.
Jørgensen
, and
N. C.
Handy
,
Theor. Chem. Acc.
76
,
227
(
1989
).
87.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chem. Acc.
75
,
111
(
1989
).
88.
T. U.
Helgaker
and
J.
Almlöf
,
Int. J. Quant. Chem.
26
,
275
(
1984
).
89.
T. U.
Helgaker
, in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
and
J.
Simons
(
Springer
,
Reidel, Dordrecht
,
1986
), pp.
1
16
.
90.
J.
Simons
,
T. U.
Helgaker
, and
P.
Jørgensen
,
Chem. Phys.
86
,
413
(
1984
).
91.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), pp.
1157
1169
.
92.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
93.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
), pp.
29
52
and
128
143
.
94.
Y.
Yamaguchi
and
H. F.
Schaefer
, in
Handbook of High-Resolution Spectroscopies
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons
,
2011
), pp.
325
362
.
95.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
96.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
97.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
98.
B.
Temelso
,
C. D.
Sherrill
,
R. C.
Merkle
, and
R. A.
Freitas
,
J. Phys. Chem. A
110
,
11160
(
2006
).
99.
J.
Rezác
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
(
2013
).
100.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
101.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
102.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
103.
U.
Bozkaya
,
E.
Soydaş
, and
B.
Filiz
,
J. Comput. Chem.
41
,
769
(
2020
).
104.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
105.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
106.
E. F. C.
Byrd
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Phys. Chem. A
105
,
9736
(
2001
).
107.
A. V.
Copan
,
A. Y.
Sokolov
, and
H. F.
Schaefer
,
J. Chem. Theory Comput.
10
,
2389
(
2014
).
108.
W. E.
Thompson
and
M. E.
Jacox
,
J. Chem. Phys.
91
,
3826
(
1989
).
109.
R.
Lindh
and
L. A.
Barnes
,
J. Chem. Phys.
100
,
224
(
1994
).
110.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
111.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, MOLPRO, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
112.
A. M.
Ricks
,
G. E.
Douberly
, and
M. A.
Duncan
,
Int. J. Mass Spectrom.
283
,
69
(
2009
).
113.
H. R.
McAlexander
,
T. J.
Mach
, and
T. D.
Crawford
,
Phys. Chem. Chem. Phys.
14
,
7830
(
2012
).
114.
G. S. F.
Dhont
,
J. H.
van Lenthe
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
123
,
184302
(
2005
).
115.
M. E.
Jacox
and
W. E.
Thompson
,
J. Chem. Phys.
100
,
750
(
1994
).

Supplementary Material

You do not currently have access to this content.